Patents Assigned to MacroGenics, Inc.
  • Publication number: 20180298100
    Abstract: This invention relates to a pharmaceutical composition that comprises a first molecule that specifically binds HER2/neu and a second molecule that specifically binds a cell-surface receptor (or its ligand) that is involved in regulating an immune checkpoint (or the ligand thereof). The invention particularly relates to the embodiment wherein the second molecule binds to PD-1. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.
    Type: Application
    Filed: June 9, 2016
    Publication date: October 18, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Jon Marc Wigginton, Naimish Bharat Pandya, Robert Joseph Lechleider, Scott Koenig, Ezio Bonvini
  • Patent number: 10100115
    Abstract: The invention concerns therapeutic compositions for the treatment of vascularizing cancers, especially, glioblastoma. In particular, the invention is directed to compositions that comprise a molecule having a binding ability that is specific for B7-H3 and a molecule having a binding ability that is specific for a cell-surface factor (or its receptor) that is involved in promoting tumor angiogenesis (especially VEGF or its receptor, VEGFR). The invention is additionally directed to the use of such compositions in the treatment of such cancers, and in particular, in the treatment of glioblastoma.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 16, 2018
    Assignee: MacroGenics, Inc.
    Inventor: Andrew S. Chi
  • Patent number: 10100116
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than the antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The present invention also provides the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: October 16, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Robyn Gerena
  • Patent number: 10093738
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody-like functionality to engineered into the molecule.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 9, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 10093739
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody-like functionality to engineered into the molecule.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: October 9, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 10059763
    Abstract: The disclosure relates to compounds specific for IL23A and TNF-alpha, compositions comprising the compounds, and methods of use thereof. Nucleic acids, cells, and methods of production related to the compounds and compositions are also disclosed.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 28, 2018
    Assignees: BOEHRINGER INGELHEIM INTERNATIONAL GMBH, MACROGENICS, INC.
    Inventors: Rachel Rebecca Barrett, Leslie S. Johnson, Sanjaya Singh, Kathleen Last-Barney, Daw-Tsun Shih, Patricia Giblin, Scott Brodeur, Nelamangala Nagaraja
  • Publication number: 20180194840
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through nonpeptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody like functionality to engineered into the molecule.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. JOHNSON, Ling HUANG
  • Publication number: 20180155423
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Application
    Filed: January 24, 2018
    Publication date: June 7, 2018
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20180148497
    Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecules and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells wherein the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28, or CH44.
    Type: Application
    Filed: September 29, 2015
    Publication date: May 31, 2018
    Applicants: Duke University, MacroGenics, Inc., The University of North Carolina at Chapel Hill
    Inventors: Barton F. HAYNES, Guido FERRARI, Scott KOENIG, Leslie S. JOHNSON, Chia-Ying Kao LAM, Julia A. SUNG, David M. MARGOLIS, Liqin LIU, Jeffrey Lee NORDSTROM
  • Publication number: 20180134790
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 17, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Patent number: 9963510
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody-like functionality to engineered into the molecule.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 8, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Publication number: 20180118824
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise two polypeptide chains and which possess at least one binding site specific for an epitope of CD3 and one binding site specific for an epitope of gpA33 (i.e., a “gpA33×CD3 bi-specific monovalent diabody”). The present invention also is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of gpA33 and one binding site specific for an epitope of CD3 (i.e., a “gpA33×CD3 bi-specific monovalent Fc diabody”). The bi-specific monovalent diabodies and bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to gpA33 and CD3. The invention is directed to pharmaceutical compositions that contain such bi-specific monovalent diabodies or such bi-specific monovalent Fc diabodies.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 3, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Paul A. Moore, Jonathan Li, Francine Zhifen Chen, Leslie S. Johnson, Kalpana Shah, Ezio Bonvini
  • Publication number: 20180094072
    Abstract: The present invention is directed to sequence-optimized CD123×CD3 bi-specific monovalent diabodies that are capable of simultaneous binding to CD123 and CD3, and to the uses of such diabodies in the treatment of hematologic malignancies.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 5, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Ling Huang, Paul A. Moore, Gurunadh Reddy Chichili, Ralph Froman Alderson
  • Publication number: 20180092978
    Abstract: The present invention relates to methods of treatment, prevention, management or amelioration of one or more symptoms of diseases or disorders associated with CD20 expression that encompass administration of a combination of: (A) one or more antibodies that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies bind Fc?RIIA, and (B) one or more antibodies that specifically bind to CD20. Such methods include methods of treating, preventing, managing or ameliorating one or more symptoms of a B cell related disease or disorder or an inflammatory disorder. The invention also provides pharmaceutical compositions comprising an anti-Fc?RIIB antibody and an anti-CD20 antibody.
    Type: Application
    Filed: July 14, 2017
    Publication date: April 5, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Nadine Tuaillon, Christopher Rankin
  • Patent number: 9932400
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise two polypeptide chains and which possess at least one binding site specific for an epitope of CD3 and one binding site specific for an epitope of gpA33 (i.e., a “gpA33×CD3 bi-specific monovalent diabody”). The present invention also is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of gpA33 and one binding site specific for an epitope of CD3 (i.e., a “gpA33×CD3 bi-specific monovalent Fc diabody”). The bi-specific monovalent diabodies and bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to gpA33 and CD3. The invention is directed to pharmaceutical compositions that contain such bi-specific monovalent diabodies or such bi-specific monovalent Fc diabodies.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: April 3, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Paul A. Moore, Jonathan Li, Francine Zhifen Chen, Leslie S. Johnson, Kalpana Shah, Ezio Bonvini
  • Patent number: 9908938
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 6, 2018
    Assignees: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20180051079
    Abstract: This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: May 31, 2017
    Publication date: February 22, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 9896508
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 20, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Zhifen Chen
  • Patent number: 9889197
    Abstract: Diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers are disclosed. The diabody molecules comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as disulfide bonding of cysteine residues located within each polypeptide chain. The diabody molecules may further comprise an Fc region, which allows antibody-like functionality to be engineered into the molecule.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 13, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Godfrey Jonah Anderson Rainey
  • Publication number: 20180016344
    Abstract: The present invention is directed to multivalent DR5-Binding Molecules that comprise Binding Domain(s) of anti-DR5 antibodies, and particularly Binding Domain(s) of anti-human DR5 antibodies. The DR5-Binding Molecules of the present invention include bivalent and tetravalent molecules having two, three or four DR5-Binding Domains each capable of binding human DR5. In particular, the present invention is directed to multivalent DR5-Binding Molecules that comprise diabodies, and more particularly, diabodies that comprise a covalently bonded complex of two or more polypeptide chains. The invention particularly pertains to such multivalent DR5-Binding Molecules that comprise of the anti-DR5 antibodies DR5 mAb 1 and/or DR5 mAb 2, and/or humanized and chimeric versions of such antibodies.
    Type: Application
    Filed: May 29, 2015
    Publication date: January 18, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Paul A. Moore, Leslie S. Johnson, Jonathan C. Li, Kalpana Shah