Patents Assigned to MacroGenics, Inc.
  • Publication number: 20150274838
    Abstract: The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: June 1, 2015
    Publication date: October 1, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Paul A. Moore, Ling Huang, Deryk T. Loo, Francine Z. Chen
  • Publication number: 20150259396
    Abstract: The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds Fc?RIIIA and/or Fc?RIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by Fc?R is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
    Type: Application
    Filed: April 8, 2015
    Publication date: September 17, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Jeffrey B. Stavenhagen, Sujata Vijh, Christopher Rankin, Sergey Gorlatov, Ling Huang
  • Publication number: 20150259434
    Abstract: The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Paul A. Moore, Ling Huang, Deryk T. Loo, Francine Z. Chen
  • Patent number: 9096877
    Abstract: The present invention relates to Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and to methods of using such polypeptides for treating or preventing cancer and other diseases. The Fc region-containing polypeptides of the present invention are preferably immunoglobulins (e.g., antibodies), in which the Fc region comprises at least one amino acid substitution relative to the corresponding amino acid sequence of a wild type Fc region, and which is sufficient to attenuate post-translational fucosylation and mediate improved binding to an activating Fc receptor and reduced binding to an inhibitory Fc receptor. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 4, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Godfrey Jonah Anderson Rainey, Sergey Gorlatov, Laura Lerner
  • Publication number: 20150175697
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: May 16, 2012
    Publication date: June 25, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Publication number: 20150166658
    Abstract: This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 9056906
    Abstract: The present invention provides methods of treating, preventing, slowing the progression of, or ameliorating the symptoms of T cell mediated immunological diseases, particularly autoimmune diseases (e.g., autoimmune diabetes (i.e. type 1 diabetes or insulin-dependent diabetes mellitus (IDDM)) and multiple sclerosis) through the use of anti-human CD3 antibodies. The antibodies of the invention of the invention are preferably used in low dose dosing regimens, chronic dosing regimens or regimens that involve redosing after a certain period of time. The methods of the invention provide for administration of antibodies that specifically bind the epsilon subunit within the human CD3 complex. Such antibodies modulate the T cell receptor/alloantigen interaction and, thus, regulate the T cell mediated cytotoxicity associated with autoimmune disorders.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: June 16, 2015
    Assignee: MACROGENICS, INC.
    Inventors: Scott Koenig, Ronald L. Wilder, Ezio Bonvini, Leslie S. Johnson
  • Patent number: 9028815
    Abstract: The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds Fc?RIIIA and/or Fc?RIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by Fc?R is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: May 12, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey Stavenhagen, Sujata Vijh, Christopher Rankin, Sergey Gorlatov, Ling Huang
  • Patent number: 8993730
    Abstract: This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: March 31, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 8968730
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind the extracellular domain of Fc?RIIB, particularly human Fc?RIIB, and block the Fc binding site of human Fc?RIIB. The invention provides methods of treating cancer and/or regulating immune complex-mediated cell activation by administering the antibodies of the invention to enhance an immune response. The invention also provides methods of breaking tolerance to an antigen by administering an antigen-antibody complex and an antibody of the invention.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: March 3, 2015
    Assignee: MacroGenics Inc.
    Inventors: Scott Koenig, Maria Concetta Veri, Nadine Tuaillon
  • Patent number: 8951517
    Abstract: The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds Fc?RIIIA and/or Fc?RIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by Fc?R is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 10, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey Stavenhagen, Sujata Vijh, Christopher Rankin, Sergey Gorlatov, Ling Huang
  • Patent number: 8946387
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, more particularly the extracellular domain of Fc?RIIB with greater affinity than said antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA, and block the Fc binding site of Fc?RIIB. The present invention also encompasses the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The present invention also encompasses the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, in combination with other cancer therapies.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 3, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Scott Koenig, Maria Concetta Veri, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20150023964
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than the antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The present invention also provides the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Robyn Gerena
  • Publication number: 20140328750
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Publication number: 20140328843
    Abstract: The present invention relates to methods of treatment, prevention, management or amelioration of one or more symptoms of diseases or disorders associated with CD20 expression that encompass administration of a combination of: (A) one or more antibodies that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies bind Fc?RIIA, and (B) one or more antibodies that specifically bind to CD20. Such methods include methods of treating, preventing, managing or ameliorating one or more symptoms of a B cell related disease or disorder or an inflammatory disorder. The invention also provides pharmaceutical compositions comprising an anti-Fc?RIIB antibody and an anti-CD20 antibody.
    Type: Application
    Filed: June 4, 2014
    Publication date: November 6, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Nadine Tuaillon, Christopher Rankin
  • Publication number: 20140328836
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20140255407
    Abstract: The present invention relates to bispecific molecules that are immunoreactive to an activating receptor of a companion animal immune effector cell and to B7-H3, and to the use of such bispecific molecules in the treatment of cancer in companion animals.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: MacroGenics, Inc.
    Inventor: Scott Koenig
  • Patent number: 8802091
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 12, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Patent number: 8802093
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: August 12, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Patent number: 8795667
    Abstract: The present invention relates to improved compositions for the prevention and treatment of smallpox, and in particular to the use of compositions containing an antibody that binds to an epitope found on the MV form of the smallpox virus and an antibody that binds to an epitope found on the EV form of the smallpox virus. The invention relates to such compositions, especially to non-blood derived antibody compositions, such as chimeric or humanized antibodies, and to methods for their use in imparting passive immunity against smallpox infection to individuals at risk of smallpox virus infection or who exhibit smallpox.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 5, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang