Abstract: A removable gas sensor module is provided for a therapeutic gas delivery device. The gas sensor module includes a sample chamber which receives a sample gas from the therapeutic gas delivery device. A gas detection unit includes a plurality of sensors operable to measure at least one property of the sample gas. The sensors include two or more of a gas detection sensor, a humidity sensor, a temperature sensor, or a combination thereof. The gas sensor module is self-contained within the therapeutic gas delivery device and swappable with another gas sensor module.
Abstract: A valve assembly including a housing and a valve, the valve being disposed within the housing, a first indexed member integral to the housing, the first indexed member adapted to be complementary to a second indexed member, and a radio frequency identification device adapted to communicate with a radio frequency receiver, the valve being configured to align with a canister, seal the canister and open in a single movement. A drug containment device having said valve assembly is also disclosed.
Type:
Grant
Filed:
September 15, 2023
Date of Patent:
June 24, 2025
Assignee:
Mallinckrodt Hospital Products IP Unlimited Company
Inventors:
Frederick J. Montgomery, Duncan P. Bathe, Daniel J. Lee, Scott I. Biba, Todd J. Bakken
Abstract: The present disclosure provides methods to improve the viability of an organ, or organs, by continuously administering a composition comprising NOx gas directly to the organ(s).
Abstract: The principles and embodiments of the present invention relate to methods and systems for safely providing NO to a recipient for inhalation therapy. There are many potential safety issues that may arise from using a reactor cartridge that converts NO2 to NO, including exhaustion of consumable reactants of the cartridge reactor. Accordingly, various embodiments of the present invention provide systems and methods of determining the remaining useful life of a NO2-to-NO reactor cartridge and/or a breakthrough of NO2, and providing an indication of the remaining useful life and/or breakthrough.
Abstract: Therapy gas delivery systems that provide run-time-to-empty information to a user of the system and methods for administering therapeutic gas to a patient. The therapeutic gas delivery system may include a gas pressure sensor attachable to a therapeutic gas source that communicates therapeutic gas pressure data to a therapeutic gas delivery system controller, a gas temperature sensor positioned to measure gas temperature in the therapeutic gas source that communicates therapeutic gas temperature data to the therapeutic gas delivery system controller, at least one flow controller that communicates therapeutic gas flow rate data to the therapeutic gas delivery system controller, at least one flow sensor that communicates flow rate data to the therapeutic gas delivery system controller, and at least one display that communicates run-time-to-empty to a user of the therapeutic gas delivery system.
Abstract: Disclosed are methods of treatment that permit a reduction of risk of mortality in infants who are candidates for treatment with inhaled nitric oxide, by identifying a subset of such infants who are at an increased risk of mortality upon treatment with inhaled nitric oxide; also disclosed are related systems for use in administering inhaled nitric oxide and methods of distributing a pharmaceutical product.
Abstract: Described is an apparatus for monitoring nitric oxide delivery, wherein such apparatus comprises a display that provides a visual and/or numeric indication of the calculated dose of nitric oxide. Also described is a method of monitoring nitric oxide delivery, wherein the breathing gas flow rate and therapeutic gas flow rate are measured and used to determine the calculated dose of nitric oxide, which is then displayed. In some embodiments, an alert is provided when the calculated dose rises above or falls below a predetermined level or range.
Abstract: The disclosure relates to a substance adiponectin and/or adiponectin receptor agonist (ARA) for use in the treatment of immune checkpoint blockade (ICB)-induced immune related adverse events (irAEs) in a subject, wherein the subject is preferably receiving checkpoint blockade therapy as a cancer therapy. As well as to a combination medication comprising adiponectin and/or adiponectin receptor agonist (ARA) and a photosensitizing agent for combined use in the treatment of immune checkpoint blockade (ICB)-induced immune related adverse events (irAEs) in a subject, wherein the treatment further comprises the extracorporeal irradiation of a blood sample of the subject with ultraviolet A (UVA), preferably extracorporeal photopheresis (ECP) therapy.
Abstract: A photopheresis system (200) is disclosed, and that may be configured to execute one or more protocols. These protocols include: 1) protocols (400; 430; 460) for purging air out of a centrifuge bowl (210) used by the photopheresis system (200); 2) protocols (500; 510 550) for assessing the installation/operation of one or more pressure domes (330) used by the photopheresis system (200); and 3) protocols (580; 600; 660; 700; 740) for collecting buffy coat from blood processed by the photopheresis system (200).
Abstract: A photopheresis system (200) is disclosed, and that may be configured to execute one or more protocols. These protocols include: 1) protocols (400; 430; 460) for purging air out of a centrifuge bowl (210) used by the photopheresis system (200); 2) protocols (500; 510 550) for assessing the installation/operation of one or more pressure domes (330) used by the photopheresis system (200); and 3) protocols (580; 600; 660; 700; 740) for collecting buffy coat from blood processed by the photopheresis system (200).
Type:
Application
Filed:
April 19, 2024
Publication date:
August 8, 2024
Applicant:
MALLINCKRODT HOSPITAL PRODUCTS IP LIMITED
Inventors:
Dennis Briggs, Simon Do, Eric Rabeno, Abdoulaye Sangare, Mark Vandlik, Vicki Fluck, Christopher Turek
Abstract: Described are systems and methods for monitoring administration of nitric oxide (NO) to ex vivo fluids. Examples of such fluids include blood in extracorporeal membrane oxygenation (ECMO) circuits or perfusion fluids used for preserving ex vivo organs prior to transplanting in a recipient. The systems and methods described herein provide for administering nitric oxide to the fluid, monitoring nitric oxide or a nitric oxide marker in the fluid, and adjusting the nitric oxide administration.
Abstract: Methods for identifying premature infants at risk for developing bronchopulmonary dysplasia and/or most likely to benefit from administration of inhaled nitric oxide for prevention of bronchopulmonary dysplasia (BPD). Methods for treating premature infants identified as at risk and/or likely to benefit are provided. also provided are methods for identifying premature infants that are not at risk for developing bronchopulmonary dysplasia and/or unlikely to benefit from administration of inhaled nitric oxide for prevention of bronchopulmonary dysplasia, and methods for avoiding risks of toxicity and undesirable side effects associated with inhaled nitric oxide therapy comprising administering only non-iNO treatment modalities to these infants.
Abstract: Therapy gas delivery systems that provide run-time-to-empty information to a user of the system and methods for administering therapeutic gas to a patient. The therapeutic gas delivery system may include a gas pressure sensor attachable to a therapeutic gas source that communicates therapeutic gas pressure data to a therapeutic gas delivery system controller, a gas temperature sensor positioned to measure gas temperature in the therapeutic gas source that communicates therapeutic gas temperature data to the therapeutic gas delivery system controller, at least one flow controller that communicates therapeutic gas flow rate data to the therapeutic gas delivery system controller, at least one flow sensor that communicates flow rate data to the therapeutic gas delivery system controller, and at least one display that communicates run-time-to-empty to a user of the therapeutic gas delivery system.