Patents Assigned to Massachusetts Institute for Technology
  • Publication number: 20120171093
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Application
    Filed: November 3, 2011
    Publication date: July 5, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Patent number: 8211226
    Abstract: Mixture for use in a three-dimensional printer to make molds suitable for producing ferrous coatings. The mixture includes cement, sand and accelerator. Grain sizes of the cement, sand and accelerator are selected to assure that the three-dimensional printer generates coherent layers.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: James F. Bredt, Michael J. Tarkanian, Mahati Chintapalli
  • Patent number: 8212541
    Abstract: A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Perreault, Robert C. N. Pilawa-Podgurski, David M. Giuliano
  • Patent number: 8211625
    Abstract: An optical structure is provided. The optical structure includes a substrate structure. A photosensitive material layer is positioned on said substrate structure. The photosensitive material layer having uniform periodic geometry and a period length throughout associated with a 2D periodic pattern. The 2D periodic pattern includes a period length greater than the exposing light wavelength and spatial variation in the duty cycle of the features of a mask layer used in the formation of said 2D periodic pattern.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: William J. Arora, George Barbastathis
  • Patent number: 8210840
    Abstract: A stamping structure for imprinting micro-sized features is provided. The stamping structure includes a flexure arrangement having one or more diaphragm flexures arranged in a series or parallel or hybrid configuration so as to manage load-capacity while still achieving adequate vertical and angular range of a sample supported on the one or more diaphragm flexures.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Vijay Shilpickandula, Kamal Youcef-Toumi
  • Patent number: 8212132
    Abstract: The present invention generally provides compositions including carbon-containing molecules, and related methods. In some cases, the present invention relates to aromatic molecules comprising functional groups bonded to the aromatic portion of the molecule, including nonplanar portions of the molecules. Methods of the invention may provide the ability to introduce a wide range of functional groups to carbon-containing molecules. In some cases, methods of the invention may be performed using relatively mild reaction conditions, such as relatively low temperature, low pressure, and/or in the absence of strong acids or strong bases. The present invention may provide a facile and modular approach to synthesizing molecules that may be useful in various applications including photovoltaic devices, sensors, and electrodes (e.g., for electrocatalysis).
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Wei Zhang
  • Publication number: 20120164903
    Abstract: Nanostructure reinforced articles and related systems and methods are generally described.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Roberto Guzman de Villoria
  • Publication number: 20120164755
    Abstract: Nanoparticles with a patterned ligand coat can bind ions selectively. The ligand patterning can arise via self-assembly when two chemically dissimilar (e.g., in size and/or hydrophilicity) ligands are used together. One of the ligands can include one or more moieties capable of interacting with an ion, such as ether oxygens, hydroxyl groups, amine nitrogens, or other groups having a lone pair of electrons. Ion binding can be both selective and reversible.
    Type: Application
    Filed: December 28, 2011
    Publication date: June 28, 2012
    Applicants: ENI SPA, Massachusetts Institute of Technology
    Inventors: Eun Seon Cho, Francesco Stellacci, Pietro Cesti, Raffaella Borrelli
  • Publication number: 20120164678
    Abstract: The invention relates to recombinant expression of a steviol or steviol glycosides biosynthetic pathway enzymes in cells and the production of steviol or steviol glycosides.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Gregory Stephanopoulos, Parayil K. Ajikumar
  • Publication number: 20120164587
    Abstract: Lithographic Method. The method fabricates complex structures and includes depositing a photoresist onto a substrate, the photoresist including a predominantly thermal band of optical absorption possibly due to the incorporation of a doping agent. A three-dimensional pattern is generated within the resist using a first wavelength of light to effect activation of a photoinitiator to produce a latently photostructured resist. Focused laser spike annealing of the photostructured resist with a second wavelength of light selected to be absorbed by the thermally absorbing band to accelerate the photoinduced reaction in the resist is provided. Three-dimensional direct writing may be performed within the resist to define features not part of the interference pattern and the resist is developed to produce the complex structure.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Jonathan Phillip Singer, Jae-Hwang Lee, Steven E. Kooi, Edwin Lorimer Thomas
  • Publication number: 20120160362
    Abstract: This invention relates generally to articles, devices, and methods for gas hydrate mitigation in deep-sea drilling applications. In certain embodiments, hydrate-phobic surfaces are provided that ensure passive enhancement of flow assurance and prevention of catastrophic failures in deep-sea oil and gas operations.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: J. David Smith, Kripa K. Varanasi, Gareth H. McKinley, Robert E. Cohen, Adam J. Meuler, Harrison L. Bralower
  • Publication number: 20120164499
    Abstract: The present invention is related to electrochemical energy generation devices including at least one electrode comprising an electrochemically active fluid that is enclosed within the cell, as well as related articles, systems, and methods. In some embodiments, the anode and/or cathode of the electrochemical energy generation devices described herein can be formed of an electrochemically active fluid, such as a semi-solid or a redox active ion-storing liquid. The electrochemical energy generation device can be configured such that the anode and/or cathode can be flowed into their respective electrode compartments, for example, during assembly. During operation, on the other hand, little or none of the electrochemically active fluid(s) are transported into or out of the energy generation device (e.g., out of the electrode compartments of the electrochemical energy generation device).
    Type: Application
    Filed: August 18, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, W. Craig Carter, Mihai Duduta, Bryan Y. Ho
  • Patent number: 8206952
    Abstract: In a method for synthesizing a long nucleic acid molecule, a first immobilized nucleic acid has a first 5? region and a first 3? region and a second immobilized nucleic acid has a second 5? region and a second 3? region. The second 3? region and the first 5? region have identical nucleic acid sequences. An oligonucleotide is hybridized to the first 3? region, extending the hybridized oligonucleotide and producing a first extension product having a 3? region that is complementary to the first 5? region. The 3? region of the first extension product is hybridized to the second 3? region, extending the 3? region of the first extension product and producing a synthesized nucleic acid molecule having a 3? region that is complementary to the second 5? region, wherein the synthesized nucleic acid molecule has a sequence complementary to the first and second 3? and 5? regions.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 26, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter A. Carr, Brian Y. Chow, Joseph M. Jacobson, David W. Mosley, Christopher Emig
  • Patent number: 8206468
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 26, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Patent number: 8206469
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 26, 2012
    Assignees: A123 Systems, Inc., Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William D. Moorehead, Antoni S. Gozdz, Richard K. Holman, Andrew L. Loxley, Gilbert N. Riley, Jr., Michael S. Viola
  • Patent number: 8209132
    Abstract: The invention relates, in part, to the improved analysis of carbohydrates. In particular, the invention relates to the analysis of carbohydrates, such as N-glycans and O-glycans found on proteins and saccharides attached to lipids. Improved methods, therefore, for the study of glycosylation patterns on cells, tissue and body fluids are also provided. Information from the analysis of glycans, such as the glycosylation patterns on cells, tissues and in body fluids, can be used in diagnostic and treatment methods as well as for facilitating the study of the effects of glycosylation/altered glycosylation. Such methods are also provided. Methods are further provided to assess production processes, to assess the purity of samples containing glycoconjugates, and to select glycoconjugates with the desired glycosylation.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 26, 2012
    Assignees: Momenta Pharmaceuticals, Inc., Massachusetts Institute of Technology
    Inventors: Carlos Bosques, Nishla Keiser, Aravind Srinivasan, Rahul Raman, Karthik Viswanathan, Ram Sasisekharan, Pankaj Gandhe, Sasi Raguram
  • Publication number: 20120155725
    Abstract: Techniques for inferring particle dynamics from certain data include determining multiple models for motion of particles in a biological sample. Each model includes a corresponding set of one or more parameters. Measured data is obtained based on measurements at one or more voxels of an imaging system sensitive to motion of particles in the biological sample; and, determining noise correlation of the measured data. Based at least in part on the noise correlation, a marginal likelihood is determined of the measured data given each model of the multiple models. A relative probability for each model is determined based on the marginal likelihood. Based at least in part on the relative probability for each model, a value is determined for at least one parameter of the set of one or more parameters corresponding to a selected model of the multiple models.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Mark Bathe, Jun He, Syuan-Ming Guo, Nilah Monnier
  • Publication number: 20120153295
    Abstract: Radiation detector. The detector includes an ionic junction having an ionically bonded wide band gap material having a first region dominated by positively charged ionic defects in intimate contact with a second region dominated by negatively charged ionic defects forming depleted regions on both sides of the junction resulting in a built-in electric field. The detector also includes an ionic junction having a first ionically bonded wide band gap material dominated by positively charged ionic defects in intimate contact with a second ionically bonded wide band gap material dominated by negatively charged ionic defects forming depleted regions on both sides of the junction resulting in a built-in electric field. Circuit means are provided to establish a voltage across the junction so that radiation impinging upon the junction will cause a current to flow in the circuit.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 21, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Harry L. Tuller, Sean R. Bishop
  • Publication number: 20120158215
    Abstract: In exemplary embodiments of this invention, a programmable surface comprises an array of cells. Each of the cells can communicate electronically with adjacent cells in the array, can compute, and can generate either normal thrust or shear thrust. Distributed computing is employed. The programmable surface may cover all or part of the exterior of a craft, such as an aircraft or marine vessel. Or, instead, the programmable surface may comprise the craft itself, which may, for example, take the form of a “flying carpet” or “flying sphere”. The thrust generated by the programmable surface can be employed directly to provide lift. Or it can be used to control the orientation of the craft, by varying the relative amount of thrust outputted by the respective cells. The number of cells employed may be changed on a mission-by-mission basis, to achieve “span on demand”. Each cell may carry its own payload.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 21, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Amy Sun, Neil Gershenfeld
  • Publication number: 20120156577
    Abstract: Methods of forming electrodes for electrolysis of water and other electrochemical techniques are provided. In some embodiments, the electrode comprising a current collector and a catalytic material. The method of forming the electrode may comprising immersing a current collector comprising a metallic species in an oxidation state of zero in a solution comprising anionic species, and causing a catalytic material to form on the current collector by application of a voltage to the current collector, wherein the catalytic material comprises metallic species in an oxidation state greater than zero and the anionic species.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 21, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Daniel G. Nocera, Elizabeth R. Young, Ronny Costi, Sarah Paydavosi