Abstract: The invention relates to a method and device for placing implants using a surgical template which is made from tomographic cuts in the patient's jawbone. Step drills and calibrating drills, having a single standard diameter for each type of implant, are guided through drill bushings which are inserted into bores in the template in order to produce any drilling sequence corresponding to an implant plan. The penetration depth of the drills is controlled by the height of the bores or by the drill rings. The method limits the required number of drills and implant supports to the longest models only. The inventive method and device are particularly suitable for computer-assisted implantology systems.
Abstract: Use of computer technology for image-assisted risk assessment/evaluation of proposed dental treatments is described, in particular a method and apparatus for determining the impact of a proposed dental modification on the temporomandibular joint(s), e.g. to obtain information relating to that impact. Use of a virtual articulator is described to determine the impact of a proposed dental modification on the temporomandibular joint(s). This dental modification includes, but is not limited to, the replacement of one or more teeth by artificial teeth, the replacement of one or more parts of a tooth by a prosthetic reconstruction such as a dental crown or veneer, the rearrangement of one or more existing teeth (orthodontic treatment), the distraction of one or both jaws in order to reposition the teeth (orthognatic treatment) and/or modifications of the occlusal surfaces of the teeth.
Type:
Application
Filed:
April 29, 2009
Publication date:
August 4, 2011
Applicant:
Materialise Dental N.V.
Inventors:
Katja Malfliet, Veerle Pattijn, Carl Van Lierde
Abstract: Surgical guiding tools for surgery on a bone head which include a cutting component, a guiding component and a collar having a patient-specific component are disclosed. The surgical guiding tools are interconnected which ensures secure and accurate placement of the guiding tool and thus guarantees accurate implementation of the pre-operative planning of the surgical intervention.
Type:
Application
Filed:
July 17, 2009
Publication date:
January 20, 2011
Applicant:
Materialise N.V.
Inventors:
Karla De Smedt, Frederik Gelaude, Tim Clijmans
Abstract: A pivot or hinge structure integrated into the main body of an exoskeletal, e.g. orthotic device is described as well as methods for computer aided designing and making of these devices. Computer systems and software for carrying out the methods are also described. The integrated pivot or hinge structure has a specified axis of rotation, such as one coinciding or approximating with the natural rotation axis of the ankle, knee, elbow or any other relevant joint. Preferably the pivot or hinged structure is provided with a personalised resistance to rotation. The pivot or hinge structure is a pivot or hinge comprising at least two separate cylindrical parts that rotate with respect to each other, the axis of rotation being at the centre of the cylinder. The pivot or hinge can be placed to the optimal location and orientation in regard to the limb or anatomical features observed or measured from the patient thanks to the layered manufacturing technique. The range of motion can be structurally limited if needed.
Type:
Application
Filed:
July 9, 2010
Publication date:
January 13, 2011
Applicant:
Materialise N.V.
Inventors:
Jari Heikki Petteri PALLARI, Roel Wirix-Speet JENS
Abstract: A patient's dentition is analysed to determine an orthodontic treatment plan by simulating an intervention in advance. 3D imaging techniques and computer technology are used to simulate and predict tooth movement as a function of the chosen treatment, i.e. a specific orthodontic appliance. In this way treatment options can be compared and the most optimal (shortest treatment time, lowest forces . . . ) treatment for each individual patient can be selected. Sub-steps of the tooth movement are not predefined but computed based on a simulation of orthodontic elements and wire as they would be used in the orthodontic treatment of the patient. This means that the sub-steps are calculated based on the relationship between the applied loads and the tooth movement; only one of both parameters can be chosen freely.
Type:
Application
Filed:
December 22, 2008
Publication date:
November 4, 2010
Applicant:
Materialise Dental N.V.
Inventors:
Veerle Pattijn, Bert Van Roie, Carl Van Lierde
Abstract: The invention relates to a custom-fit implantable surgical guide (1) and an associated milling tool (4), which is positioned in straddling on the alveolar ridge (7) of a maxillary or mandible arch (2) and comprises at least one drilling barrel (11) for axially guiding said milling tool (4), wherein said barrel (11) is laterally open and at least one part of the internal surface thereof (17) and at least one part of the external surface of the milling tool (4) interact and axially maintain the entire milling tool (4) with respect to the barrel (11). Said invention makes it possible to carry out high precision osteotomies for lateral insertion dental implants.
Abstract: The present invention is directed to an improved method for supporting an object made by means of stereo lithography or any other rapid prototype production method. The generation of the support begins by determining the region that requires support in each layer of the object and defines a number of support points in this region. In a next step, a support mesh is generated connected to the object using these support points. The present invention also discloses different techniques that reduce superfluous edges to further optimize the support mesh. Finally, a support is generated from this support mesh. The present invention may facilitate the generation of supports data by employing more automation and less user analysis.
Abstract: Orthotic and prosthetic devices having integrated features such as cushioning features are described, as well as methods for computer aided designing and making of these devices. The orthotic or prosthetic devices comprise a cushioning layer superimposed onto an orthotic or prosthetic shell, the cushioning layer comprising an array (35) of discrete solid and resilient cushioning elements (31). In one preferred embodiment, said cushioning structure is a beam, defined around a centerline of any arbitrary shape. In another preferred embodiment, said cushioning structure has the shape of a spiral.
Abstract: A device (10) is provided for positioning at least one orthodontic element (300) on a dentition (100) by means of an orthodontic element holder (500) for holding at least one orthodontic element (300). The device (10) comprises a positioning template (101) for fitting on at least a part of the dentition (100). The positioning template (101) has at least one open area (200) for allowing an orthodontic element (300) to contact the dentition (100). The positioning template (101) has an inner surface (102) for contacting the at least a part of the dentition (100). The positioning template (101) is further provided with at least one guide (400) coupled to and extending from the positioning template (101) in a direction away from the dentition (100) when the inner surface (102) is in contact with the dentition (100).
Type:
Application
Filed:
December 21, 2007
Publication date:
April 15, 2010
Applicant:
Materialise Dental N.V.
Inventors:
Alessio Esposti, Bert Van Roie, Carl Van Lierde
Abstract: The invention relates to a method and device for placing implants (1) using a surgical template (11) which is made from tomographic cuts in the patient's jawbone (7). According to the invention, step drills (4) and calibrating drills (5), having a single standard diameter for each type of implant (1), are guided through drill bushings (18) which are inserted into bores (15) in the template (11) in order to produce any drilling sequence corresponding to an implant plan. The penetration depth of the drills (4, 5) is controlled by the height of the bores (15) or by the drill rings (21). The aforementioned template (11) bores (15) serve as a guide for the precise placement of the implants (1) owing to the adapted implant supports (3). Moreover, washers (23), which are mounted around the implant supports (3), limit compression in relation to the implants (1) while said implants are being placed (20).
Abstract: The present invention provides a method for creating a personalized digital planning file for simulation of dental implant placement. After planning, the digital representation in a plaster model may be used to design and produce dedicated surgical templates to assist the surgeon in transferring the implant plan to a patient during medical intervention.
Abstract: A method is set fourth for making a perfected medical model on the basis of digital image information of a part of the body. According to which this image information of a part of the body is converted, by means of what is called the rapid prototyping technique and thus with a processing unit (4) and a rapid prototyping machine (5), into a basic model (9) of which at least a part perfectly shows the positive or negative form of at least a portion of the part of the body. At least an artificial functional element (10) with a useful function is added to the basic model (6) as a function of the digital information and possibly as a function of additional external information.
Abstract: A method of supporting an object made by stereolithography or another rapid prototype production method, in which a support is provided with at least one supporting structure which is airier than a supporting structure made of solid standing walls, including those made with notches at the top and/or at the bottom. The supporting structure can be made airy by using walls of which at least a number are provided with openings over a major part of their surface.
Type:
Grant
Filed:
March 10, 1995
Date of Patent:
January 21, 1997
Assignee:
Materialise, Naamloze Vennootschap
Inventors:
Bart Swaelens, Johan Pauwels, Wilfried Vancraen