Patents Assigned to Matrix Semiconductor, Inc.
  • Patent number: 6420215
    Abstract: A multi-level memory array is described employing rail-stacks. The rail-stacks include a conductor and semiconductor layers. The rail-stacks are generally the diode is located in one rail-stack and the other half in the other rail-stack.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: July 16, 2002
    Assignee: Matrix Semiconductor, Inc.
    Inventors: N. Johan Knall, Mark Johnson
  • Publication number: 20020083390
    Abstract: The preferred embodiments described herein provide a three-dimensional memory array and method for storing data bits and ECC bits therein. In one preferred embodiment, a three-dimensional memory array of the type that includes multiple vertically-stacked layers of memory cells is provided. The three-dimensional memory array comprises a plurality of memory cells arranged in a plurality of physically-independent sub-arrays, and data bits and error checking and correcting (ECC) bits of a word are stored in respective ones of the physically-independent sub-arrays. By spatially diffusing data bits and ECC bits from a word, the likelihood of multiple-bit errors within the word is reduced. This is advantageous since most ECC circuitry is capable of correcting only single-bit errors within a given word. Other preferred embodiments are disclosed.
    Type: Application
    Filed: December 22, 2000
    Publication date: June 27, 2002
    Applicant: MATRIX SEMICONDUCTOR, INC.
    Inventors: Thomas H. Lee, James M. Cleeves, Mark G. Johnson
  • Patent number: 6407953
    Abstract: In a preferred integrated circuit embodiment, a write-once memory array includes at least one test bit line which provides a respective test memory cell at the far end of each respective word line relative to its word line driver, and further includes at least one test word line which provides a respective test memory cell at the far end of each respective bit line relative to its bit line driver. An intra-layer short between word lines may be detected, such as during manufacturing testing, by biasing adjacent word lines to different voltages and detecting whether any leakage current flowing from one to another exceeds that normally accounted for by the memory cells and other known circuits. Intra-layer bit line shorts and inter-layer word line and bit line shorts may also be similarly detected. An “open” in a word line or bit line may be detected by trying to program the test memory cell at the far end of each such word line or bit line.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: June 18, 2002
    Assignee: Matrix Semiconductor, Inc.
    Inventor: James M. Cleeves
  • Patent number: 6385074
    Abstract: An integrated circuit device includes a three-dimensional memory array and array terminal circuitry for providing to selected memory cells of the array a write voltage different from a read voltage. Neither voltage is necessarily equal to a VDD power supply voltage supplied to the integrated circuit. The write voltage, particularly if greater than VDD, may be generated by an on-chip voltage generator, such as a charge pump, which may require an undesirably large amount of die area, particularly relative to a higher bit density three-dimensional memory array formed entirely in layers above a semiconductor substrate. In several preferred embodiments, the area directly beneath a memory array is advantageously utilized to layout at least some of the write voltage generator, thus locating the generator near the selected memory cells during a write operation.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 7, 2002
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald, James M. Cleeves
  • Patent number: 6351406
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: February 26, 2002
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, P. Michael Farmwald, James M. Cleeves
  • Publication number: 20010055838
    Abstract: A nonvolatile memory array is provided. The array includes an array of nonvolatile memory devices, at least one driver circuit, and a substrate. The at least one driver circuit is not located in a bulk monocrystalline silicon substrate. The at least one driver circuit may be located in a silicon on insulator substrate or in a compound semiconductor substrate.
    Type: Application
    Filed: August 13, 2001
    Publication date: December 27, 2001
    Applicant: Matrix Semiconductor Inc.
    Inventors: Andrew J. Walker, Mark G. Johnson, N. Johan Knall, Igor G. Kouznetsov, Christopher J. Petti
  • Patent number: 6185122
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: February 6, 2001
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, P. Michael Farmwald, James M. Cleeves
  • Patent number: 6034882
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 7, 2000
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald, James M. Cleeves