Patents Assigned to Max-Planck-Gesellschaft
  • Patent number: 11355330
    Abstract: The present invention relates to use of an isobaric label in mass spectrometry (MS) analysis using data-independent acquisition (DIA), wherein said isobaric label comprises or consists of a group which fragments in the mass spectrometer (i) at an energy below the energy required for fragmenting analyte-derived precursor ions and/or a higher conversion rate than said precursor ions; and (ii) at said energy according to (i) and when coupled to a precursor ion, at a single site within said group, to yield a first moiety and a second moiety, said second moiety being coupled to said precursor ion.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: June 7, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAF 1 EN E.V.
    Inventors: Felix Meissner, Matthias Mann, Florian Meier, Sebastian Virreira Winter, Arturo Zychlinsky
  • Patent number: 11345724
    Abstract: The present invention relates to a compound of formula (I), wherein X is C?O, C?S or B—OH; Y is an electrophile and Z is a leaving group, or Y?Z is an electrophile; R1 comprises or consists of (a) (i) a first group binding to a proteolytic site of a proteasome, the first group being bound to X; and (ii) optionally a second group enhancing delivery; or (b) a group binding between subunits ?1 and ?2 of a proteasome; R2 and R3 are independently selected from H, methyl, methoxy, ethyl, ethenyl, ethynyl and cyano, wherein methyl and ethyl may be substituted with OH or halogen.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: May 31, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Ashwin Chari, Holger Stark, Jil Schrader, Fabian Henneberg
  • Patent number: 11340162
    Abstract: For comparing first optical properties of a first fluid with second optical properties of a second fluid a first transparent grating having a grating constant is made of the first liquid, and a second transparent grating also having the grating constant is made of the second liquid. The second transparent grating is arranged at a lateral offset of less than 45% of the grating constant with regard to the first transparent grating such that grating bars of the first and second transparent gratings are arranged side by side. Coherent light is directed onto the first and second transparent gratings such that light which passed through the grating bars of the first and second transparent gratings forms a diffraction pattern comprising intensity maxima. Two light intensities of two intensity maxima of a same order higher than zero are measured and compared to each other.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 24, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Thomas P. Burg, Margherita Bassu, Foelke Purr, Andreas Dietzel
  • Patent number: 11342645
    Abstract: A non-reciprocal quantum device that comprises a first terminal and a second terminal, a transmission structure connected between the first and second terminals and configured to transmit microscopic particles in at least a partially phase-coherent manner from the first terminal to the second terminal and possibly from the second terminal to the first terminal, wherein a time-reversal symmetry of the transmission of the particles is broken with respect to at least a portion of the transmission structure; wherein the time-reversal symmetry is broken in such a way that the transmission structure comprises a higher transmission probability for particles moving in a first direction from the first terminal to the second terminal than in a second direction from the second terminal to the first terminal.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 24, 2022
    Assignee: Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V.
    Inventor: Jochen Mannhart
  • Publication number: 20220153797
    Abstract: The current disclosure relates to methods for treating ovarian cancer based on specific antigen expression of the cancer. Furthermore, the expressed antigen may be used in immunotherapeutic methods for treatment of the ovarian cancer. Aspects of the disclosure relate to immunotherapies targeting CT45 polypeptides, methods for treating ovarian cancer based on CT45 expression, and kits for detecting CT45 polypeptides and nucleotides.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Applicants: The University of Chicago, Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V.
    Inventors: Ernst Lengyel, Matthias Mann, Marion Curtis, Fabian Coscia
  • Publication number: 20220154220
    Abstract: The present invention relates to compounds suitable to increase precise genome editing efficiency in a eukaryotic target cell or target organism. Thus, the present invention can be applied in gene therapy.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 19, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Stephan RIESENBERG, Tomislav MARICIC
  • Publication number: 20220146907
    Abstract: A hollow-core anti-resonant-reflecting fibre (HC-AF) includes a hollow-core region, an inner cladding region, and an outer cladding region. The hollow-core region axially extends along the HC-AF. The inner cladding region includes a plurality of anti-resonant elements (AREs) and surrounds the hollow-core region. The outer cladding region surrounds the inner cladding region. The hollow-core region and the plurality of AREs are configured to provide phase matching of higher order hollow-core modes and ARE modes in a broadband wavelength range.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Philip RUSSELL, Patrick UEBEL, Michael Henoch FROSZ
  • Publication number: 20220127597
    Abstract: The present invention relates to methods for producing solid supports. The present invention further provides a mixture of said solid supports for tagmentation of target DNA for DNA sequencing approaches, a corresponding kit comprising the same and methods employing said mixture of solid supports and/or kit. Specifically, methods for producing sequencing libraries and corresponding DNA sequencing methods for analyzing the generated sequencing libraries and tools used therein are provided. In particular, DNA In sequencing approaches allowing preservation of contiguity information of long DNA fragments even when using short read sequencing approaches are disclosed. A key concept of the present invention is to employ segmented barcodes, with every barcode segmented allowing for barcode error detection and correction on a segment level.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 28, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Yingguang Frank CHAN, Marek KUCKA, Andreea DREAU
  • Publication number: 20220129701
    Abstract: The invention relates to a system for detecting objects in a digital image. The system comprises a neural network which is configured to generate candidate windows indicating object locations, and to generate for each candidate window a score representing the confidence of detection. Generating the scores comprises: generating a latent representation for each candidate window, updating the latent representation of each candidate window based on the latent representation of neighboring candidate windows, and generating the score for each candidate window based on its updated latent representation The invention further relates to a system for rescoring object detections in a digital image and to methods of detecting objects and rescoring objects.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 28, 2022
    Applicants: TOYOTA MOTOR EUROPE, MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Daniel OLMEDA REINO, Bernt Schiele, Jan Hendrik Hosang, Rodrigo Benenson
  • Patent number: 11311010
    Abstract: The present invention provides lignin nanoparticles containing a hydrophobic active agent and a process for the production of the lignin nanoparticles. The process involves the following steps: (i) dissolving modified lignin and a hydrophobic active agent in an organic solvent having low solubility in water; (ii) combining the solution with water and a surfactant to form a pre-emulsion; (iii) forming an emulsion from the pre-emulsion; and (iv) crosslinking the modified lignin to form the lignin nanoparticles, in which the modified lignin is lignin which is chemically modified to contain at least two functional groups suitable for polymerization and/or crosslinking.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 26, 2022
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V., INSTITUT FÜR BIOTECHNOLOGIE UND WIRKSTOFF-FORSCHUNG GGMBH
    Inventors: Frederik Wurm, Katharina Landfester, Doungporn Yiamsawas, Eckhard Thines, Jochen Fischer
  • Patent number: 11306118
    Abstract: The present invention relates to compounds according to general formula (I) with enhanced absorption of UV-B irradiation. The present invention also relates to an UV-B tolerant plant and a method for enhanced production of compounds according to general formula (I) in a plant or plant cell. Furthermore, the invention relates to a nucleic acid sequence SEQ-ID No. 1 encoding FPT2 catalyzing the production of compounds according to general formula (I). The invention further relates to compositions comprising compounds according to general formula (I). Furthermore, the invention relates to a method of conferring UV-B tolerance to a plant as well as an UV-B tolerant plant comprising the nucleic acid sequence SEQ-ID No. 1 encoding FPT2 catalyzing the production of compounds according to general formula (I).
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: April 19, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Alisdair R. Fernie, Takayuki Tohge, Regina Wendenburg, Hirofumi Ishihara, Ronan Sulpice, Mark Stitt
  • Publication number: 20220089234
    Abstract: The invention relates to a robot leg comprising at least two joints, each joint connecting two segments one to another, with each joint comprising a cam, the robot leg further comprising at least one actuator and a common tendon interconnecting each cam.
    Type: Application
    Filed: January 20, 2020
    Publication date: March 24, 2022
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Alexander Sprowitz, Alborz Aghamaleki Sarvestani
  • Patent number: 11282256
    Abstract: A computer-implemented method for indexing a database of human body shapes, wherein the human body shapes are represented in terms of coefficient vectors in a geometric body space. The method includes predicting, for human body shapes in the database, a vector of word ratings, based on parameters of the human body shape, using a mapping between the geometric body space and a linguistic body space, wherein the linguistic body space is represented in terms of body descriptor words; and storing the body descriptor words and their predicted rating values in the database with each human body shape.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: March 22, 2022
    Assignees: Max-Planck-Gesellschaft zur Förderung D. Wissenschaften e.V., Board Of Regents, The University of Texas System
    Inventors: Stephan Streuber, Maria Alejandra Quirós Ramírez, Michael Black, Silvia Zuffi, Alice O'Toole, Matthew Q. Hill, Carina A. Hahn
  • Patent number: 11274304
    Abstract: In a first aspect, the present invention relates to an isolated nucleic acid molecule, in particular, an RNA molecule containing particular substitutions. In a further aspect, the present invention relates to a composition comprising the same as well as virus-like particle, viral vector or virus particle containing the nucleic acid molecule according to the present invention. The virus-like particle, the viral vector or the virus particle is suitable for use as a medicament in particular for treating viral infection. Further, a pharmaceutical composition is provided in particular suitable for use as a pharmaceutical prophylactic vaccine containing the virus-like particle, viral vector or the virus particle or the nucleic acid molecule according to the present invention.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 15, 2022
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Sascha Kupke, Timo Frensing, Pawel Zmora, Udo Reichl
  • Patent number: 11269135
    Abstract: A hollow-core anti-resonant-reflecting fibre (HC-AF) includes a hollow-core region, an inner cladding region, and an outer cladding region. The hollow-core region axially extends along the HC-AF. The inner cladding region includes a plurality of anti-resonant elements (AREs) and surrounds the hollow-core region. The outer cladding region surrounds the inner cladding region. The hollow-core region and the plurality of AREs are configured to provide phase matching of higher order hollow-core modes and ARE modes in a broadband wavelength range.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: March 8, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Philip Russell, Patrick Uebel, Michael Henoch Frosz
  • Publication number: 20220062849
    Abstract: The present invention relates to a method and a device for producing saccharides and saccharide arrays. Said method is particularly useful for the synthesis of saccharides in parallel and of high-density saccharide arrays, such as microarrays, which are required for high-throughput screenings.
    Type: Application
    Filed: December 17, 2019
    Publication date: March 3, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Felix Löffler, Marco Mende, Stephan Eickelmann, Peter H. Seeberger, Alexandra Tsouka, Jasmin Heidepriem, Grigori Paris
  • Patent number: 11262699
    Abstract: An ultrasonic apparatus (100) for creating a holographic ultrasound field (1) comprises an ultrasound source device (10) being adapted for creating an ultrasound wave, and a transmission hologram device (20) having a transmission hologram (21) and an exposed acoustic emitter surface (22), said transmission hologram device (20) being acoustically coupled with the ultrasound source device (10) and being arranged for transmitting the ultrasound wave through the acoustic emitter surface (22) and creating the holographic ultrasound field in a surrounding space, wherein the acoustic emitter surface (22) is a smooth surface which do not influence the field distribution of the ultrasound wave. Furthermore, a method of creating a holographic ultrasound field in an object (3), wherein the ultrasonic apparatus (100) is used, and applications of the ultrasonic apparatus (100) are described.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 1, 2022
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Kai Melde, Peer Fischer, Peter-Karl Weber
  • Patent number: 11263797
    Abstract: The invention relates to a method for transmitting 3D model data, the 3D model data comprising polygons, from a server to a client for rendering, the method comprising: obtaining the 3D model data by the server; and transmitting the 3D model data from the server to the client. According to the invention, the 3D model data is obtained by the server, based on a given multitude of possible views.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: March 1, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.
    Inventors: Jozef Hladký, Markus Steinberger, Hans-Peter Seidel
  • Patent number: 11261223
    Abstract: The current disclosure relates to methods for treating ovarian cancer based on specific antigen expression of the cancer. Furthermore, the expressed antigen may be used in immunotherapeutic methods for treatment of the ovarian cancer. Aspects of the disclosure relate to immunotherapies targeting CT45 polypeptides, methods for treating ovarian cancer based on CT45 expression, and kits for detecting CT45 polypeptides and nucleotides.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 1, 2022
    Assignees: The University of Chicago, Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.
    Inventors: Ernst Lengyel, Matthias Mann, Marion Curtis, Fabian Coscia
  • Patent number: 11255791
    Abstract: A method of spatially measuring a plurality of nano-scale structures in a sample comprises the steps of: marking the individual structures at different locations with fluorescent markers, coupling the individual structures to individual positioning aids whose positions in the sample are known, exciting the fluorescent markers with excitation light for emission of fluorescence light, wherein an intensity distribution of the excitation light has a local minimum, arranging the local minimum at different positions in a close-up range around the position of respective positioning aid whose dimensions are not larger than the diffraction limit at the wavelength of the excitation light, registering the fluorescence light emitted out of the sample separately for the individual fluorescent markers and for the different positions of the minimum, and determining positions of the individual fluorescent markers in the sample from the intensities of the fluorescence light registered.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: February 22, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN
    Inventors: Stefan W. Hell, Yvan Eilers, Klaus Gwosch, Francisco Balzarotti