Patents Assigned to MaxLinear, Inc.
  • Patent number: 11799500
    Abstract: A system for a fiber-optic network includes a transceiver. The transceiver includes a fiber-optic interface unit and a host unit. The host unit includes a low-complexity error correction decoder and a high-complexity error correction decoder. One or both from the low-complexity error correction decoder and the high-complexity error correction decoder are selected to decode input data from the fiber-optic interface unit, the input data including codewords.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: October 24, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Gert Schedelbeck, Rainer Strobel, Vladimir Oksman
  • Publication number: 20230299889
    Abstract: A method includes sending wireless data to a receiver node and receiving feedback from the receiver node that identifies a subset of the wireless data that the receiver node failed to receive correctly and that includes a token value as a label for the subset of the wireless data as a group. The method includes constructing retransmission wireless data that includes the subset of the wireless data and the token value. The method includes sending the retransmission wireless data to the receiver node. The receiver node may be a first client device. The method further includes allocating a first set of token values to the first client device and a second set of non-overlapping token values to a second client device in a network. The method includes respectively notifying the first and second client device of the corresponding set of token values for retransmissions requested by the corresponding client device.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: MAXLINEAR, INC.
    Inventors: Sigurd SCHELSTRAETE, Imran LATIF
  • Patent number: 11758461
    Abstract: A communication system includes multiple distributed antenna circuits and an access point (AP). The distributed antenna circuits include at least first and second antenna circuits. The AP is coupled to the distributed antenna circuits and includes multiple transmit chains, multiple receive chains, and an antenna control circuit communicatively coupled to the transmit chains and the receive chains. The first antenna circuit is co-located with the AP and the second antenna circuit is remote from the AP. The antenna control circuit is configured to determine a subset of the distributed antenna circuits to communicatively couple to at least some of the transmit chains to transmit data to a wireless station (STA) that is in range of the subset.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: September 12, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Abhishek Kumar Agrawal, Huizhao Wang, Peiman Amini, Sigurd Schelstraete, Debashis Dash
  • Patent number: 11750254
    Abstract: An example method may include obtaining first beamforming feedback from a station based on first sounding signals from a first set of antennas selected from multiple antennas of an access point, and obtaining second beamforming feedback from the station based on second sounding signals from a second set of antennas selected from the multiple antennas of the access point. The method may also include, using the first beamforming feedback and the second beamforming feedback, determining correlational relationships between pairs of the multiple antennas of the access point, and deriving a beamforming steering matrix from the correlational relationships.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: September 5, 2023
    Assignee: MaxLinear, Inc.
    Inventor: Evgenii Dombrovskii
  • Patent number: 11750223
    Abstract: A system comprises a forward error correction decoder comprising syndrome computation circuitry, key-equation solver circuitry, and search and evaluator circuitry. The syndrome computation circuitry may comprise a plurality of syndrome compute units connected in parallel. The syndrome computation circuitry may be dynamically configurable to vary a quantity of the syndrome compute units used for processing of a codeword based on conditions of a channel over which the codeword was received. The syndrome computation circuitry may be operable to use a first quantity of the syndrome compute units for processing of a first codeword received over the channel when the channel is characterized by a first bit error rate and a second quantity of the syndrome compute units for processing of a second codeword received over the channel when the channel is characterized by a second bit error rate.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: September 5, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Youzhe Fan, Jining Duan
  • Patent number: 11716353
    Abstract: A method for establishing network connections includes connecting a device to a first network, retrieving voice input of a user, sending a message including data related to the voice input to at least one gateway device on the first network, receiving configuration data for a second network via the first network in response to the message, and establishing a connection of the device to the second network using the configuration data received via the first network. Furthermore, an electronic device, a network gateway device and a system are defined.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: August 1, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Prashant Dewan, Divyashree-Shivakumar Sreepathihalli, Uttam K. Sengupta
  • Patent number: 11711754
    Abstract: A network device or system can operate to enable a security pass-through with a user equipment (UE) and further define various virtual functions between a physical access point (pAP) and a virtual AP (vAP) based on one or more communication link parameters (e.g., latency). The security pass-through can be an interface connection that passes through a computer premise equipment (CPE) or wireless residential gateway (GW) without the CPE or GW modifying or affecting the data traffic such as by authentication or security protocol. The SP network device can receive traffic data from a UE through or via the security pass-through from a UE of a community Wi-Fi network at a home, residence, or entity network.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: July 25, 2023
    Assignee: MaxLinear, Inc.
    Inventor: Artur Zaks
  • Patent number: 11711312
    Abstract: An example method may include identifying a first transmit identifier (TID) associated with a first node of a wireless network as ready to transmit and adding the first TID to a ready to transmit queue at a first point in time. The method may also include identifying a second TID associated with a second node of the wireless network as ready to transmit, and adding the second TID to the ready to transmit queue at a second point in time later than the first point in time. The method may additionally include selecting the second TID from the ready to transmit queue before selecting the first TID based on a projected increased overall throughput of packets within the wireless network when communicating with the second node before communicating with the first node.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: July 25, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Artem Kurakin, Richard Kinder, Ilya Ostanin
  • Patent number: 11711149
    Abstract: A calibration system comprises control circuitry and waveform capture circuitry. The control circuitry selects a first calibration waveform for input to a digital predistortion circuit of a transmitter. The capture circuitry captures a first waveform output by the transmitter in response to the first calibration waveform. The control circuitry compares the first calibration waveform to the captured first waveform. The control circuitry selects a first one of a plurality of mapping circuit configurations based on the result of the comparison, wherein the mapping circuit is configured to map outputs of a plurality of delay circuits among inputs of a plurality of filter taps. The control circuitry stores the one of the mapping circuit configurations in nonvolatile memory associated with the transmitter.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: July 25, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Patent number: 11705988
    Abstract: A receiver may include a first filter configured to generate a first estimation of a symbol of a received signal and a second filter configured to generate a second estimation of the symbol of the received signal. The receiver may also include a decoder configured to decode the symbol using one of the first estimation and the second estimation and a decision circuit configured to select one of the first estimation and the second estimation to provide to the decoder for decoding of the symbol based on a comparison of the first estimation to an estimation threshold.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: July 18, 2023
    Assignee: MaxLinear, Inc.
    Inventor: YouZhe Fan
  • Patent number: 11688410
    Abstract: Example operations may include determining a first noise estimate of noise that propagates along a receive path of a device. The operations may further include determining a second noise estimate of the noise and determining a cross-relationship estimate with respect to the noise. In addition, the operations may include adjusting one or more correction filters configured to correct for imbalances between a first branch and a second branch of the receive path. The adjusting may be based on the first noise estimate, the second noise estimate, and the cross-relationship estimate.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: June 27, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Reza Hoshyar, Hossein Dehghan, Abhishek Kumar Agrawal, Kapil Gulati, Eugenio Rivera Ramos, Shivashankar Beesanahalli, Georgy Gilyarovskiy
  • Patent number: 11664916
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: May 30, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Patent number: 11647478
    Abstract: A microwave backhaul transceiver comprises a plurality of antenna arrays, positioning circuitry, and signal processing circuitry. The microwave backhaul transceiver may determine, via the positioning circuitry, a location of the small cell backhaul transceiver. The microwave backhaul transceiver may, generate, via the signal processing circuitry, a beacon signal that uniquely indicates the location. The microwave backhaul transceiver may transmit the beacon signal via at least one of the antenna arrays. The beacon signal may be generated using a spreading code generated from a unique identifier of the location. The unique identifier of the location may comprise global positioning system coordinates and/or a street address. During the transmitting, a directionality at which the beacon radiates from a particular one of the antenna arrays may be varied such that the beacon is transmitted in multiple directions from the particular one of the antenna arrays.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: May 9, 2023
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 11632262
    Abstract: Techniques discussed herein can facilitate handshake procedures for Point-to-Multipoint (P2MP) communication in connection with various DSL (Direct Subscriber Line) technologies. Various embodiments can employ different methods of separation of signaling to arrange P2MP handshake procedures based on existing Point-to-Point (P2P) handshake procedures. Example embodiments can employ one of separation in frequency, separation in time, or separation in transmission power level.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: April 18, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Vladimir Oksman, Dietmar Schoppmeier, Martin Fuss
  • Patent number: 11593489
    Abstract: A boot read only memory (ROM) chip unit can perform a secure boot routine based on various operations. A processor device comprises a boot ROM chip with processing circuitry on a system board configured to perform a system board power up according to a read operation in a one-time-programmable OTP memory/non-volatile memory (NVM). The OTP memory/NVM includes a spare area in a portion of the OTP/NVM that can receive a first sequence pattern. The processor determines whether a secure boot indication indicates a secure boot routine, and differentiates one or more read return content of the OTP memory/NVM between a wrongly read return content and a trusted read return content, in response to, or concurrent with, the secure boot indication indicating the secure boot routine.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 28, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Jiaxiang Shi, Chun Feng Hu, Yao Chye Lee, Qiming Wu
  • Patent number: 11585890
    Abstract: A system comprises a first phased array radar assembly configured to be attached to a vehicle. The first phased array radar assembly includes a first plurality of antennas arranged in an array and attached to a circuit board. The system also includes one or more circuits attached to the circuit board. Each of the one or more circuits includes transmitter circuitry communicatively coupled to a subset of the first plurality of antennas and receiver circuitry communicatively coupled to the subset of the first plurality of antennas.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: February 21, 2023
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 11567168
    Abstract: A radar system comprises a transmitter and a receiver. The radar system is operable to define a near range and a far range. The radar system is operable to, during each one of a plurality of time intervals, repeatedly transmit, via the transmitter, a plurality of OFDM symbols. The transmitter is operable to select a transmit power for the transmission during the one of the time intervals based on from which of the near range and the far range reflections of the OFDM symbols are to be received during the one of the time intervals. The receiver is operable to receive reflections of the OFDM symbols, and process, in the receiver, the reflections of the OFDM symbols to detect objects within the near range and the far range.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: January 31, 2023
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 11558137
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: January 17, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Patent number: 11550877
    Abstract: First transistor logic is arranged by a first logic provider in circuit form and provides a minimum of functionality of the semiconductor device employed to bring up the semiconductor device, wherein the minimum of functionality is encrypted using a first encryption key. Second transistor logic is arranged by a second logic provider, different than the first logic provider, in circuit form to include security keys capable to perform cryptographic capabilities using a second encryption key. The second transistor logic further includes functionality that completes the semiconductor device as a chip device and is ready to process secure communication signals.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 10, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Ingo Volkening, Ritesh Banerjee, Olaf Wachendorf, Stephan Pruecklmayer
  • Patent number: 11539436
    Abstract: A network infrastructure combining data over cable service interface specification (DOCSIS) cable modem management and 10 Gb passive optical network XGPON networking technology. The DOCSIS equipment controls restrict the XGPON to physical layer (layer 1) while the DOCSIS equipment operate at a data link layer and above.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 27, 2022
    Assignee: MaxLinear, Inc.
    Inventors: Gerfried Krampl, Barak Hermesh, Amos Klimker, Shaul Shulman, Franz-Josef Schaefer, Guy Ray