Patents Assigned to MC10, Inc.
  • Patent number: 10258282
    Abstract: Systems, methods and apparatuses for monitoring cardiac activity of an individual using a conformal cardiac sensor device are presented herein. A conformal cardiac sensor device for analyzing cardiac activity includes a flexible substrate for coupling to the user, and a heart sensor component embedded on/in the substrate. The heart sensor component contacts a portion of the user's skin and measures electrical variable(s) indicative of cardiac activity. A biometric sensor component is embedded on/in the flexible substrate and measures physiological variable(s) indicative of cardiac activity of the user. A microprocessor, which is embedded on/in the flexible substrate, is communicatively coupled to the heart sensor component and biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurements of electrical data and physiological data.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 16, 2019
    Assignee: MC10, Inc.
    Inventors: Gilbert Lee Huppert, Roozbeh Ghaffari, Melissa Ceruolo, Bryan Keen, Milan Raj, Bryan McGrane
  • Patent number: 10186546
    Abstract: System, devices and methods are presented that integrate stretchable or flexible circuitry, including arrays of active devices for enhanced sensing, diagnostic, and therapeutic capabilities. The invention enables conformal sensing contact with tissues of interest, such as the inner wall of a lumen, a the brain, or the surface of the heart. Such direct, conformal contact increases accuracy of measurement and delivery of therapy. Further, the invention enables the incorporation of both sensing and therapeutic devices on the same substrate allowing for faster treatment of diseased tissue and fewer devices to perform the same procedure.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 22, 2019
    Assignee: MC10, Inc.
    Inventors: Bassel De Graff, Roozbeh Ghaffari, William J. Arora
  • Patent number: 10032709
    Abstract: Systems and methods are provided for the embedding of thin chips. A well region is generated in a substrate that includes a conductive material disposed on a flexible polymer. The standoff well region can be generated by pattern the conductive material, where the thin chip is embedded in the standoff well region. A cavity can be generated in the polymer layer to form a polymer well region, where the thin chip is embedded in the polymer well region.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 24, 2018
    Assignee: MC10, INC.
    Inventors: Conor Rafferty, Mitul Dalal
  • Patent number: 10024743
    Abstract: Apparatus, systems, and methods for monitoring head acceleration and/or forces acting thereon are disclosed. A device for monitoring an acceleration or a force acting on the head of a user includes a flexible article adapted to be worn on the head of the user; and a monitoring assembly coupled to the flexible article. The monitoring assembly includes a sensor for measuring a force on the head and transmitting data relating to the force, the sensor disposed proximate to the head, a processor adapted to receive the force data from the sensor, and a flexible strip operatively connecting the sensor and the processor.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: July 17, 2018
    Assignees: Reebok International Limited, MC10 Inc.
    Inventors: Paul M. Davis, William Marvin, Steven Fastert, Kevin Dowling, Paul E. Litchfield, Benjamin Schlatka, Gilman Callsen, Robert Rich, Dustin G. Simone, Keith A. Stern, Dennis Gaboriault
  • Patent number: 9949691
    Abstract: Systems, methods and apparatuses for monitoring cardiac activity of an individual using a conformal cardiac sensor device are presented herein. A conformal cardiac sensor device for analyzing cardiac activity includes a flexible substrate for coupling to the user, and a heart sensor component embedded on/in the substrate. The heart sensor component contacts a portion of the users skin and measures electrical variable(s) indicative of cardiac activity. A biometric sensor component is embedded on/in the flexible substrate and measures physiological variable(s) indicative of cardiac activity of the user. A microprocessor, which is embedded on/in the flexible substrate, is communicatively coupled to the heart sensor component and biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurements of electrical data and physiological data.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: April 24, 2018
    Assignee: MC10, Inc.
    Inventors: Gilbert Lee Huppert, Roozbeh Ghaffari, Melissa Ceruolo, Bryan Keen, Milan Raj, Bryan McGrane
  • Publication number: 20180076336
    Abstract: System, devices and methods are presented that integrate stretchable or flexible circuitry, including arrays of active devices for enhanced sensing, diagnostic, and therapeutic capabilities. The invention enables conformal sensing contact with tissues of interest, such as the inner wall of a lumen, a the brain, or the surface of the heart. Such direct, conformal contact increases accuracy of measurement and delivery of therapy. Further, the invention enables the incorporation of both sensing and therapeutic devices on the same substrate allowing for faster treatment of diseased tissue and fewer devices to perform the same procedure.
    Type: Application
    Filed: April 27, 2017
    Publication date: March 15, 2018
    Applicant: MC10, Inc.
    Inventors: Bassel De Graff, Roozbeh Ghaffari, William J. Arora
  • Patent number: 9899330
    Abstract: Flexible integrated circuit (IC) modules, flexible IC devices, and methods of making and using flexible IC modules are presented herein. A flexible integrated circuit module is disclosed which includes a flexible substrate and a semiconductor die attached to the flexible substrate. An encapsulating layer, which is attached to the flexible substrate, includes a thermoplastic resin and/or a polyimide adhesive encasing therein the semiconductor die. The encapsulating layer may be an acrylic-based thermally conductive and electrically isolating polyimide adhesive. Optionally, the encapsulating layer may be a B-stage FR-4 glass-reinforced epoxy thermoplastic polymer or copolymer or blend. The die may be embedded between two flexible substrates, each of which includes a layer of flexible polymer, such as a polyimide sheet, with two layers of conductive material, such as copper cladding, disposed on opposing sides of the layer of flexible polymer.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 20, 2018
    Assignee: MC10, INC.
    Inventors: Mitul Dalal, Sanjay Gupta
  • Patent number: 9894757
    Abstract: In embodiments, the present invention may attach at least two isolated electronic components to an elastomeric substrate, and arrange an electrical interconnection between the components in a boustrophedonic pattern interconnecting the two isolated electronic components with the electrical interconnection. The elastomeric substrate may then be stretched such that the components separate relative to one another, where the electrical interconnection maintains substantially identical electrical performance characteristics during stretching, and where the stretching may extend the separation distance between the electrical components to many times that of the unstretched distance.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 13, 2018
    Assignee: MC10, Inc.
    Inventors: William J. Arora, Roozbeh Ghaffari
  • Patent number: 9846829
    Abstract: A system is provided for integrating conformal electronics devices into apparel. The system includes a flexible substrate onto which a flexible device is disposed. The flexible device can include a stretchable coil that can be used to receive and transmit near field communications. The flexible device also includes an integrated circuit component and a memory unit. In some examples, the device also includes a sensor that is configured to record measurement of the wearer of the apparel and/or the surrounding environment.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: December 19, 2017
    Assignee: MC10, Inc.
    Inventors: Steven Fastert, Kevin J. Dowling, Benjamin Schlatka, Conor Rafferty
  • Patent number: 9844145
    Abstract: Buffer structures are provided that can be used to reduce a strain in a conformable electronic system that includes compliant components in electrical communication with more rigid device components. The buffer structures are disposed on, or at least partially embedded in, the conformable electronic system such that the buffer structures overlap with at least a portion of a junction region between a compliant component and a more rigid device component. The buffer structure can have a higher value of Young's modulus than an encapsulant of the conformable electronic system.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: December 12, 2017
    Assignee: MC10, Inc.
    Inventor: Yung-Yu Hsu
  • Patent number: 9833190
    Abstract: A system, device and method are presented for utilizing stretchable active integrated circuits with inflatable bodies. The invention allows for such operative features to come into direct contact with body structures, such as the inner wall of a lumen. Such direct contact increases accuracy of measurement and delivery of therapy.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 5, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Gilman Callsen, William J. Arora, Benjamin Schlatka
  • Patent number: 9810623
    Abstract: The present invention relates to portable devices for point-of-care diagnostics that can perform measurements on a sample (e.g., blood, serum, saliva, or urine) and relay data to an external device for, e.g., data analysis. The device can comprise a paper-based diagnostic substrate and a base substrate that include electronic circuitry and electronic elements necessary for performing the measurements. The device can also comprise an antenna for near field communication with an external device. Another aspect of the invention relates to methods of using these devices.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 7, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Alexander Aranyosi, Stephen Lee
  • Patent number: 9801557
    Abstract: Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 31, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Stephen Lee, John Work, John A. Wright, Jr., Lauren Klinker
  • Patent number: 9757050
    Abstract: An apparatus for medical diagnosis and/or treatment is provides. The apparatus includes a flexible substrate forming an inflatable body and a plurality of force sensing elements disposed on the flexible substrate. The plurality of force sensing elements are disposed about the inflatable body such that the force sensing elements are disposed at areas of minimal curvature of the inflatable body in a deflated state.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 12, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Yung-Yu Hsu
  • Patent number: 9750421
    Abstract: Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: September 5, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Stephen Lee, John Work, John A. Wright, Jr., Lauren Klinker
  • Patent number: 9723711
    Abstract: Flexible electronic structure and methods for fabricating flexible electronic structures are provided. An example method includes applying a first layer to a substrate, creating a plurality of vias through the first layer to the substrate, and applying a second polymer layer to the first layer such that the second polymer forms anchors contacting at least a portion of the substrate. At least one electronic device layer is disposed on a portion of the second polymer layer. At least one trench is formed through the second polymer layer to expose at least a portion of the first layer. At least a portion of the first layer is removed by exposing the structure to a selective etchant to providing a flexible electronic structure that is in contact with the substrate. The electronic structure can be released from the substrate.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: August 1, 2017
    Assignee: MC10, Inc.
    Inventors: Brian David Elolampi, Roozbeh Ghaffari, Bassel de Graff, William J. Arora, Xiaolong Hu
  • Patent number: 9723122
    Abstract: A protective case for a wireless electronics device includes one or more output devices integrated with or bonded to the protective case, from which a perceivable output (e.g., visible or audible indication) is generated. Various other electronics (e.g., circuit elements, ICs, microcontrollers, sensors) also may be integrated with or bonded to the protective case to provide power and/or one or more output signals to control the output device(s). In one example, a wireless signal generated by the wireless device is sensed by the integrated electronics, and the output device(s) are controlled based on the detected wireless signal. The protective case may be substantially rigid or at least partially deformable (flexible and/or stretchable), and the integrated electronics similarly may be at least partially deformable such that they may conform with various contours of the protective case and remain operative notwithstanding flexing and/or stretching of the case.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 1, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Benjamin Schlatka, Gilman Callsen, Bassel de Graff
  • Patent number: 9704908
    Abstract: System, devices and methods are presented that provide an imaging array fabrication process method, comprising fabricating an array of semiconductor imaging elements, interconnecting the elements with stretchable interconnections, and transfer printing the array with a pre-strained elastomeric stamp to a secondary non-planar surface.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: July 11, 2017
    Assignee: MC10, Inc.
    Inventors: Bassel de Graff, Gilman Callsen, William J. Arora, Roozbeh Ghaffari
  • Patent number: 9702839
    Abstract: Devices are described for providing quantitative information relating to a sample. Example devices include a flexible substrate, a sample receiver at least partially formed in or disposed on the flexible substrate, electronic circuitry and at least one indicator electrically coupled to the electronic circuitry. The flexible substrate includes at least one paper-based portion, at least one elastomeric portion, or at least one plastic portion. The electronic circuitry and the at least one indicator are at least partially formed in or disposed on the flexible substrate. The electronic circuitry generates an analysis result based on an output signal from the sample or a derivative of the sample. The at least one indicator provides an indication of the quantitative information relating to the sample based at least in part on the at least one analysis result.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: July 11, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Stephen P. Lee, Bassel De Graff
  • Patent number: D825537
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: August 14, 2018
    Assignee: MC10, Inc.
    Inventors: Xia Li, Mitul Dalal, Gilbert Lee Huppert, Sanjay Gupta