Abstract: A method to use UE as a mobile device relay using PC5 link or sidelink to relay data traffic to/from end UEs for coverage extension is proposed. A relay UE can be the group head UE of a UE relay group including one or more remote UEs. A remote UE can be in-coverage or out-of-coverage of the serving cell served by a serving base station. In a first novel aspect, the network is aware of remote UE existence without direct Uu link. In addition, methods for resource allocation and interference management are proposed. In a second novel aspect, solutions for synchronization of remote UEs on PC5 link, and solutions for connection setup between relay UE and remote UEs on PC5 link are proposed.
Abstract: An electronic device includes a semiconductor chip and a first memory device. The semiconductor chip includes an input/output (I/O) interface circuit. The first memory device is external to the semiconductor chip. The semiconductor chip communicates with the first memory device via the I/O interface circuit. The semiconductor chip stores at least one hardware setting of the semiconductor chip into the first memory device before a power-off event of the semiconductor chip.
Abstract: The present invention provides a multi-battery system including a plurality of devices and a processing circuit. Each of the plurality of devices includes a battery, a measurement circuit and a communication interface, wherein the measurement circuit is configured to measure the battery to generate battery information, and the communication interface is configured to transmit the battery information. The processing circuit is configured to receive the plurality of battery information of the plurality of devices, and use a universal gauge master algorithm to process the battery information of the plurality of devices to generate a plurality of gauge results, respectively.
Abstract: A semiconductor package includes a bottom substrate and a top substrate space apart from the bottom substrate such that the bottom substrate and the top substrate define a gap therebetween. A logic die is mounted on a top surface of the bottom substrate in a flip-chip fashion. The logic die has a thickness of 125-350 micrometers. The logic die comprises an active front side, a passive rear side, and an input/output pad provided on the active front side. A plurality of copper cored solder balls is disposed between the bottom substrate and the top substrate around the logic die to electrically connect the bottom substrate with the top substrate. A sealing resin fills in the gap between the bottom substrate and the top substrate and seals the logic die and the plurality of copper cored solder balls in the gap.
Abstract: A semiconductor package includes a bottom substrate and a top substrate space apart from the bottom substrate such that the bottom substrate and the top substrate define a gap therebetween. A logic die is mounted on a top surface of the bottom substrate. The logic die has a thickness of 125-350 micrometers. A plurality of copper cored solder balls is disposed between the bottom substrate and the top substrate around the logic die to electrically connect the bottom substrate with the top substrate. A sealing resin fills into the gap between the bottom substrate and the top substrate and sealing the logic die and the plurality of copper cored solder balls in the gap.
Abstract: Apparatus and methods are described for performing wireless power transfer and foreign object detection with authentication at different power levels. The impact of time required for an authentication process to execute between transitions to different power levels is reduced.
Abstract: Various solutions for random access channel (RACH) preamble design in non-terrestrial network (NTN) communications with respect to user equipment and network apparatus are described. An apparatus may initiate a RACH procedure. The apparatus may determine a fractional frequency offset pattern or a cover code across groups of preamble sequences. The apparatus may generate a RACH preamble signal according to at least one of the fractional frequency offset pattern and the cover code. The apparatus may transmit the RACH preamble signal to a network node.
Abstract: A station (STA) affiliated with a multi-link device (MLD) that belongs to a non-simultaneous-transmission-and-reception (NSTR) link pair receives a trigger frame from an access point (AP). The STA determines whether to respond to the trigger frame. In response to determining to respond to the trigger frame, the STA transmits a trigger-based (TB) physical-layer protocol data unit (PPDU) with at least one restriction.
Type:
Grant
Filed:
September 15, 2021
Date of Patent:
September 5, 2023
Assignee:
MediaTek Singapore Pte. Ltd.
Inventors:
Kai Ying Lu, James Chih-Shi Yee, Yongho Seok
Abstract: A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a first service network utilizing a first RAT or a second service network utilizing a second RAT. The controller sends an indicator of a connection release request to the first service network via the wireless transceiver in response to terminating a first communication service with the first service network or in response to leaving the first service network for the second service network. Also, the controller releases a Radio Resource Control (RRC) connection with the first service network after sending the indicator of the connection release request.
Abstract: A method of sidelink transmission can include receiving a physical sidelink shared channel (PSSCH) associated with a first two-stage sidelink control information (SCI) at a first user equipment (UE) from a second UE over a sidelink. The first two-stage SCI indicates a physical layer identity (L1-ID) of the second UE. The method can further include determining based on the L1-ID of the second UE a time-frequency resource for transmitting a physical sidelink feedback channel (PSFCH) carrying a hybrid automatic repeat request (HARQ) feedback corresponding to reception of the PSSCH, and transmitting the PSFCH with the determined time-frequency resource. In an embodiment, transmission of the PSSCH from the second UE is a groupcast transmission or a unicast transmission.
Abstract: A switching regulator clamping the power or ground of the power switch driver is introduced. In a buck regulator, the first power switch is coupled between the input terminal of the buck regulator and the first terminal of an inductor. The second terminal of the inductor is coupled to the output terminal of the buck regulator. The second power switch is coupled between the first terminal of the inductor and an internal ground of the buck regulator. There is a driver power clamp configured to clamp the power terminal of the driver of the second power switch when the first power switch is turned off. In a boost regulator, a driver power clamp is configured to clamp the ground terminal of the driver of the power switch that couples the input inductor to an output terminal of the boost regulator when another power switch is turned off.
Abstract: A UE determines N1 component carriers on each of which the UE is configured to detect a respective one PDCCH in a slot. The UE determines N2 component carriers on each of which the UE is configured to detect respective at least two PDCCHs in the slot. The UE determines a total Q blind detections of PDCCH that the UE is capable of performing. The UE determines a first predetermined scaling factor X. The UE allocates M1 blind detections of the Q blind detections to be available on each of the N1 component carriers and M2 blind detections of the Q blind detections to be available on each of the N2 component carriers such that (N1*M1+N2*M2) is a largest integer no greater than Q. M2 equals to X*M1. The UE performs blind detections in accordance with the allocations.
Abstract: A user equipment terminal (UE) in a wireless network receives configuration information for a serving cell from a base station. The UE identifies, from the configuration information, a downlink control information (DCI) format that includes a channel occupancy duration (CO duration) field for the serving cell. After detecting the DCI format, the UE determines, from the CO duration field for the serving cell included in the DCI format, a channel occupancy in a time domain for the serving cell at a symbol-level granularity.
Abstract: A test apparatus for testing a foreign object detection (FOD) capability of a wireless power transmitter. The test apparatus includes a wireless power test receiver and at least one temperature sensor configured to sense a temperature of a foreign object between the wireless power test receiver and the wireless power transmitter during wireless power transfer between the wireless power transmitter and the wireless power test receiver. The test apparatus also includes a memory configured to store temperatures sensed by the at least one temperature sensor over a test period in which the wireless power transfer occurs and temporal information regarding times the temperatures are sensed, and a processor configured to calculate, based on the temperatures and the temporal information, a predicted temperature of the foreign object at a future point in time after the test period, and to determine a test result based on the predicted temperature.
Abstract: The techniques described herein relate to methods, apparatus, and computer readable media configured to access media data for a first three-dimensional (3D) immersive media experience including media tracks each including an associated series of samples of media data for a different component of the first 3D immersive media experience and derived immersive tracks, each comprising a set of derivation operations to perform to generate an associated series of samples of media data for a different component of a second 3D immersive media experience and perform, for each of the one or more derived immersive tracks, a derivation operation of the set of derivation operations by processing associated samples of the one or more media tracks as specified by the derivation operation to generate the associated series of samples of media data of the second 3D immersive media experience.
Abstract: A wireless communication link is established between a first station (STA) and a second STA in a 6-GHz band. The first STA and the second STA the communicate in the 6-GHz band using a low-power indoor (LPI) long range (LR) physical-layer protocol data unit (PPDU). The LPI LR PPDU includes a legacy preamble, a universal signal field (U-SIG), an extreme-high-throughput signal field (EHT-SIG), an extreme-high-throughput short training field (EHT-STF), an extreme-high-throughput long training field (EHT-LTF), and a payload. Each of the legacy preamble, U-SIG and EHT-SIG is modulated and duplicated over multiple 20-MHz subchannels for a 80-MHz, 160-MHz or 320-MHz bandwidth over which the LPI LR PPDU is transmitted. Each of the EHT-STF, EHT-LTF and payload is modulated and transmitted on an entirety of the 80-MHz, 160-MHz or 320-MHz bandwidth.
Type:
Grant
Filed:
May 28, 2021
Date of Patent:
August 29, 2023
Assignee:
MediaTek Singapore Pte. Ltd.
Inventors:
Jianhan Liu, Shengquan Hu, Hsuan-Yu Liu, Thomas Edward Pare, Jr., Yungping Hsu
Abstract: The techniques described herein relate to methods, apparatus, and computer readable media configured to accessing multimedia data that includes a plurality of media tracks that each include an associated series of samples of media data, and a derived track comprising a set of derivation operations to perform to generate a series of samples of media data for the derived track. A derivation operation of the set is performed to generate a portion of media data for the derived track, which includes: determining, based on the derivation operation, a group of media tracks from the plurality by determining each media track in the group meets a grouping criteria, selecting one media track from the group of media tracks, and adding a sample from the one media track to the derived track to generate the portion of the derived track.
Abstract: A method includes receiving a first higher-layer signal from a base station, wherein the first higher-layer signal enables the use of single PDCCH scheduling PDSCH(s) in two or more serving cells; receiving a second higher-layer signal from the base station, wherein the second higher-layer signal enables the use of cross-carrier HARQ management within the serving cells; receiving DCI in one of the serving cells to obtain the scheduling information of PDSCH(s) in the serving cells; receiving the scheduled PDSCH(s) in the serving cells based on the received DCI to obtain downlink transport blocks carried in the scheduled PDSCH(s); and sending downlink transport blocks to a HARQ entity of the serving cell indicated in the DCI carried in a PDCCH for HARQ management based on a HARQ process number indicated in the DCI carried in the PDCCH.
Abstract: A semiconductor package structure is provided. The semiconductor package structure includes a semiconductor die surrounded by a first molding compound layer. A redistribution layer (RDL) structure is formed on a non-active surface of the semiconductor die and the first molding compound layer. A second molding compound layer is formed on the RDL structure. An insulating capping layer covers the second molding compound layer. An antenna is electrically coupled to the semiconductor die and includes a first antenna element formed in the RDL structure and a second antenna element formed between the second molding compound layer and the insulating capping layer.
Abstract: Floating-point numbers are compressed for neural network computations. A compressor receives multiple operands, each operand having a floating-point representation of a sign bit, an exponent, and a fraction. The compressor re-orders the operands into a first sequence of consecutive sign bits, a second sequence of consecutive exponents, and a third sequence of consecutive fractions. The compressor then compresses the first sequence, the second sequence, and the third sequence to remove at least duplicate exponents. As a result, the compressor can losslessly generate a compressed data sequence.