Abstract: A method of joint encoding schemes with interleaver and tone mapper for multiple-resource unit (multi-RU) operation involves performing joint encoding of a plurality of information bits to generate a plurality of encoded bit sequences. The method also involves processing the plurality of encoded bit sequences by interleaving and tone mapping the encoded bit sequences with respect to a plurality of resource units (RUs) on either or both of an aggregate-RU basis and an individual-RU basis to generate a plurality of processed bit sequences. The method further involves transmitting the plurality of processed bit sequences over the plurality of RUs.
Type:
Grant
Filed:
December 21, 2021
Date of Patent:
November 7, 2023
Assignee:
MediaTek Singapore Pte. Ltd.
Inventors:
Shengquan Hu, Jianhan Liu, Shuling Feng, Thomas Edward Pare, Jr.
Abstract: A video capture method includes: controlling an image sensor to capture a plurality of first sensor output frames at a first frame rate during a first period; during the first period, checking if a motion blur condition is met; in response to the motion blur condition being met during the first period, controlling the image sensor to capture a plurality of second sensor output frames at a second frame rate during a second period following the first period, wherein the second frame rate is higher than the first frame rate; and processing consecutive sensor output frames captured by the image sensor during the first period and the second period, to generate a plurality of output frames.
Abstract: Various solutions for reducing uplink overhead with respect to user equipment and network apparatus in mobile communications are described. An apparatus may monitor a downlink channel. The apparatus may determining whether downlink control information (DCI) is received on the downlink channel. The apparatus may skip a hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback transmission on an uplink channel in an event that no DCI is received on the downlink channel.
Type:
Grant
Filed:
May 1, 2021
Date of Patent:
November 7, 2023
Assignee:
MediaTek Singapore Pte. Ltd.
Inventors:
Abdelkader Medles, Mohammed S Aleabe Al-Imari, Xiu-Sheng Li
Abstract: Embodiments of the present invention provide a method and apparatus for providing wideband channel access to wireless devices, such as 20 MHz only wireless stations. A trigger frame is transmitted by a wireless AP to a wireless STA over a secondary wireless channel. An HE TB PPDU is received by the wireless AP from the wireless STA over the secondary wireless channel responsive to the trigger frame. The devices can switch operating channels for wireless communication to the secondary wireless channel within an existing TXOP.
Type:
Grant
Filed:
March 22, 2022
Date of Patent:
November 7, 2023
Assignee:
MEDIATEK SINGAPORE PTE. LTD.
Inventors:
Yongho Seok, Chao-Chun Wang, James Chih-Shi Yee
Abstract: A method is provided, which includes conducting, at a first user equipment (UE), a listen-before-talk (LBT) process on an unlicensed band to obtain a channel occupancy time (COT) for a sidelink transmission; determining, at the first UE, based on channel sensing executed on the unlicensed band, a group of candidate sidelink resources on the unlicensed band, where each candidate side link resource is within a sidelink resource selection window, and does not have reservation that is associated with a Reference Signal Received Power (RSRP) higher than a predetermined resource exclusion RSRP threshold; selecting, at the first UE, a sidelink resource from the group of candidate sidelink resources; and performing, on the selected sidelink resource, the sidelink transmission from the first UE to a second UE, within the obtained COT. Multiple Sidelink Control Information (SCI) messages are decoded at the first UE on a single Physical Sidelink Control Channel (PSCCH) resource.
Type:
Application
Filed:
April 26, 2023
Publication date:
November 2, 2023
Applicant:
MEDIATEK INC.
Inventors:
Jing-Wei CHEN, Tao CHEN, Lung-Sheng TSAI
Abstract: An apparatus (e.g., a user equipment (UE)) maps a plurality of mutually orthogonal sequences to each of a plurality of physical resource blocks (PRBs) within an interlace. The apparatus then performs a physical uplink control channel (PUCCH) transmission in a New Radio unlicensed spectrum (NR-U). The apparatus also receives an assignment of a set of sequences for each PRB of the plurality of PRBs from a wireless network. In response, the apparatus performs an uplink control information (UCI) transmission via the PUCCH in the NR-U.
Abstract: A chip includes a peripheral component interconnect express (PCIe) switch, a dual-mode device, and a signal transmission control circuit. The PCIe switch includes a first downstream port. The dual-mode device switches between a root complex (RC) mode and an endpoint (EP) mode. The signal transmission control circuit is coupled between the PCIe switch and the dual-mode device. The first downstream port communicates with the dual-mode device operating under the EP mode. The signal transmission control circuit allows an external PCIe device to communicate with the dual-mode device operating under the RC mode.
Abstract: Aspects of the disclosure provide a method and device performing input bit allocation that includes receiving broadcasting information bits, generating timing related bits for the broadcasting information bits, and selecting a portion of the generated timing related bits. The method and device can further include allocating each of the selected timing related bits to selected input bits of an encoder, so that each of the selected timing related bits is allocated to an input bit of the encoder corresponding to an available bit channel of the encoder where the selected inputs bits of the encoder correspond to encoded bits that are located in a front portion of the encoded bits.
Abstract: A sequence detection device includes a decision-feedback equalizer (DFE), a combining circuit, a decision circuit, and a sequence detection circuit. The DFE processes a symbol decision signal to generate a first equalized signal. The combining circuit combines a data signal and the first equalized signal to generate a sample signal. The decision circuit performs hard decision upon the sample signal to generate the symbol decision signal. The sequence detection circuit performs sequence detection upon the data signal to generate and output a symbol sequence. Regarding the sequence detection, the sequence detection circuit selects branches for branch metric calculation according to at least the symbol decision signal.
Abstract: A semiconductor device includes a first functional block configured to provide a first predetermined function, a second functional block configured to provide a second predetermined function, a first capacitive device, a second capacitive device, a first coupling path, a first switch device and a second switch device. The first capacitive device is disposed physically proximate the first functional block. The second capacitive device is disposed physically proximate the second functional block. The first coupling path includes at least a first connection node connecting to the first functional block. The first switch device is controlled to selectively connect the first capacitive device to the first connection node. The second switch device is controlled to selectively connect the second capacitive device to the second functional block or a second connection node. The second connection node is disposed on the first coupling path and connecting to the first connection node.
Abstract: A method of routing data packets for a router is provided. The router includes a software network address translator (NAT) and a hardware NAT. The method includes routing, by the software NAT, a first data packet based on a routing rule stored in the software NAT, wherein the software NAT has a routing rule removing function to remove the routing rule stored in the software NAT; sending, by the software NAT, the routing rule to the hardware NAT; storing the routing rule, by the hardware NAT, in the hardware NAT; and routing, by the hardware NAT instead of the software NAT, a second data packet based on the routing rule stored in the hardware NAT. The routing rule removing function of the software NAT for the routing rule stored in the software NAT is disabled.
Abstract: An image processing method for a game loop of a game, wherein the game loop comprises a game rendering module and a MEMC module, and is executed by more than one processing unit to generate an output image to display. The image processing method includes rendering, by the game rendering module, a scene of the game to obtain a first image; rendering, by the game rendering module, a UI to obtain a second image; applying, by the MEMC module, MEMC to the first image to generate an interpolated first image; and blending, by the MEMC module, the second image and the interpolated first image into the output image.
Abstract: A connection management method includes: checking if a specific message is received from a 3rd Generation Partnership Project (3GPP) network over a non-3GPP connection; and in response to receiving the specific message, starting a user equipment (UE) initiated procedure for release of the non-3GPP connection.
Abstract: A method of channel state information (CSI) report can include receiving a CSI report configuration at a user equipment (UE) from a base station, the CSI report configuration being associated with a set of CSI reference signal (CSI-RS) resources corresponding to multiple transmission reception points (TRPs), performing a channel measurement based on the CSI-RSs resources corresponding to the multiple TRPs, determining a precoder matrix indicator (PMI) based on measurement results of the channel measurement, the PMI indicating a precoder matrix, that enables full-power transmission of each of the multiple TRPs, the precoder matrix being represented as a vertical concatenation of submatrices each corresponding to one of the multiple TRPs, each submatrix satisfying a condition that the product of the conjugate transpose of the submatrix with itself equals an identity matrix scaled by a real valued number, and transmitting a CSI report including the PMI to the base station.
Abstract: The present invention provides a wireless communication method of an electronic device, wherein the wireless communication method includes the steps of: establishing at least a first link and a second link with other devices; transmitting a frame via the first link, wherein the frame comprises a non-inheritance element comprising at least one element identity with at least one identifier of the second link that is not inherited from the first link.
Abstract: A transceiver includes: a radio-frequency (RF) front-end circuit; a dedicated RF front-end circuit; and a switchable matching circuit, integrated in a chip. The RF front-end circuit deals with communications of a first wireless standard, and the dedicated RF front-end circuit deals with communications of a second wireless standard. The switchable matching circuit provides impedance matching between the signal port and the RF front-end circuit when the RF front-end circuit is in operation, and provides impedance matching between the signal port and the dedicated RF front-end circuit when the dedicated RF front-end circuit is in operation, and includes: a first capacitive circuit coupled to the signal port; a first switch circuit coupled between the first capacitive circuit and the dedicated RF front-end circuit; a second capacitive circuit coupled to the dedicated RF front-end circuit; and a second switch circuit coupled to a second terminal of the second capacitive circuit.
Abstract: A video processing apparatus implemented in a chip includes an on-chip prediction buffer and a processing circuit. The on-chip prediction buffer is shared by a plurality of coding tools for prediction, and is used to store reference data. The processing circuit supports the coding tools for prediction, reads a plurality of first reference data from the on-chip prediction buffer as input data of a first coding tool that is included in the coding tools and enabled by the processing circuit, and writes output data of the first coding tool enabled by the processing circuit into the on-chip prediction buffer as a plurality of second reference data.
Abstract: Low-latency video coding methods and apparatuses include receiving input data associated with a current Intra slice composed of Coding Tree Units (CTU), where each CTU includes luma and chroma Coding Tree Blocks (CTBs), partitioning each CTB into non-overlapping pipeline units, and encoding or decoding the CTUs in the current Intra slices by performing processing of chroma pipeline units after beginning processing of luma pipeline units in at least one pipeline stage. Each of the pipeline units is processed by one pipeline stage after another pipeline stage, and different pipeline stages process different pipeline units simultaneously. The pipeline stage in the low-latency video coding methods and apparatuses simultaneously processes one luma pipeline unit and at least one previous chroma pipeline unit within one pipeline unit time interval.
Abstract: A semiconductor device includes a substrate and at least one capacitor element on each of opposite surfaces of the substrate. The at least one capacitor element includes a first electrode with a first pad and first terminals connected to the first pad, wherein the first terminals extend away from the substrate, and a second electrode with a second pad and second terminals connected to the second pad, wherein the second terminals extend toward the substrate, wherein the first terminals and the second terminals are staggered and separated by an interlayer dielectric layer.
Abstract: Aspects of the disclosure provide an apparatus for receiving a circularly polarized signal by linearly polarized antennas. A horizontally polarized antenna and a vertically polarized antenna of the apparatus receive a circularly polarized signal that is transmitted based on a transmitted baseband signal vector. A radio frequency (RF) module of the apparatus generates a first baseband signal vector based on the received circularly polarized signal. The first baseband signal vector includes a product of the transmitted baseband signal vector and a receiving polarization vector of the transmitted baseband signal vector. Processing circuitry of the apparatus estimates the receiving polarization vector of the transmitted baseband signal vector based on the first baseband signal vector. The processing circuitry derives a second baseband signal vector based on the estimated receiving polarization vector and the first baseband signal vector.