Patents Assigned to Medinol Ltd.
  • Patent number: 10973667
    Abstract: Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: April 13, 2021
    Assignee: Medinol Ltd.
    Inventors: Itshak Cohen, Shahar Maximuk, Gilad Moiseyev
  • Patent number: 10850065
    Abstract: A catheter tip that provides longitudinal flexibility, pushability and radial rigidity thereby improving deliverability is provided. The catheter tip includes a spring-like element to provide longitudinal flexibility and pushability to the catheter tip. The spring-like element may also provide radial support to the distal edge of the catheter tip. Alternatively, a radially rigid distal end may also be included distal of the spring-like element. The apparatus may be used with any interventional catheter system, but is particularly suitable for use with balloon-expandable stent systems and balloon-angioplasty systems, where flexibility of the catheter tip and minimal flaring of the distal edge of the catheter tip is desirable.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 1, 2020
    Assignee: Medinol Ltd.
    Inventor: Shlomit Chappel
  • Patent number: 10799376
    Abstract: The present disclosure is directed to a stent manufacturing assembly including an inner shield, a patterned metal sheet, and an outer shield. The patterned metal sheet may include a polymer coating with an embedded therapeutic agent. The inner shield, patterned metal sheet, and outer shield are arranged in a layered configuration and placed in a stent rolling mechanism with a mandrel. In particular, the patterned metal sheet is disposed on the outer shield and the inner shield is disposed on the patterned metal sheet in the layered configuration. In the layered configuration, the stent manufacturing assembly is rolled by the rolling mechanism into a tubular shape and welded to form a tubular stent.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 13, 2020
    Assignee: Medinol Ltd.
    Inventors: Vladlen Senin, Oded Stein
  • Patent number: 10426923
    Abstract: A catheter tip having a spring element that imparts longitudinal flexibility, pushability and radial rigidity to the catheter tip, thereby improving deliverability, is provided. The spring element also provides radial support to the distal edge of the catheter tip. The spring element may taper distally, but may have a substantially constant inner luminal diameter. The spring element may be partially covered or embedded, leaving its distal end exposed. The spring element may also include spaced coils in a proximal region. The apparatus may be used with any interventional catheter system, but is particularly suitable for use with balloon-expandable stent systems and balloon-angioplasty systems, where flexibility of the catheter tip and minimal flaring of the distal edge of the catheter tip is desirable.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: October 1, 2019
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Shlomit Chappel
  • Patent number: 10363152
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other-maintain the tubular shape of the helically coiled stent and prevent the polymer layer from sagging at any point between cycles of the coils.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 30, 2019
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 10342570
    Abstract: An apparatus, system and method for re-canalization or opening a passage through an occlusion in a blood vessel is provided. The apparatus and method, which are appropriate for cardiovascular and peripheral vessels, use a pulling member and a spring member, for example a compression spring, to oscillate a drilling component. The drilling component at the distal end of the catheter tip has combined longitudinal stiffness for penetrating a total or partial occlusion and high axial (lateral) flexibility to improve deliverability and crossability of a catheter through a partially occluded vessel or a tortuous vessel, and may taper distally. The system of the invention includes the apparatus and a control unit to permit adjustment of the frequency or amplitude of oscillation of the drilling component. Also provided is a method for oscillating a drilling component using a pulling member and a spring member and a method of traversing an occlusion.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 9, 2019
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Amir Panksy
  • Patent number: 10251658
    Abstract: An attachment mechanism and method for attaching or coupling a guide wire to a catheter for re-canalization or opening a passage through an occlusion in a blood vessel is provided. The attachment mechanism generates friction forces against the guide wire to couple the guide wire to a catheter, which design permits a greater force to be used on the guide wire during a re-canalization procedure. The invention also encompasses use of the attachment mechanism in conjunction with active catheters, which have vibration-generating means to oscillate the distal end of the catheter or a component in the distal end of the catheter, to add vibration motion, preferably axial vibration motion, to the increased force that may be applied to the guide wire for purposes of penetrating an occlusion. The methods of the invention relate to methods of attaching the guide wire to the catheter and methods of treating a vessel having a partial or total occlusion.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: April 9, 2019
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Amir Pansky, Gal Demer
  • Patent number: 10226369
    Abstract: Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: March 12, 2019
    Assignee: Medinol Ltd.
    Inventors: Itshak Cohen, Shahar Maximuk, Gilad Moiseyev
  • Patent number: 9968471
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 15, 2018
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9789283
    Abstract: A catheter tip having a spring element that imparts longitudinal flexibility, pushability and radial rigidity to the catheter tip, thereby improving deliverability, is provided. The spring element also provides radial support to the distal edge of the catheter tip. The spring element may taper distally, but may have a substantially constant inner luminal diameter. The spring element may be partially covered or embedded, leaving its distal end exposed. The spring element may also include spaced coils in a proximal region. The apparatus may be used with any interventional catheter system, but is particularly suitable for use with balloon-expandable stent systems and balloon-angioplasty systems, where flexibility of the catheter tip and minimal flaring of the distal edge of the catheter tip is desirable.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: October 17, 2017
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Shlomit Chappel
  • Patent number: 9775632
    Abstract: An apparatus, system and method for re-canalization or opening a passage through an occlusion in a blood vessel is disclosed. The apparatus and method, which are appropriate for both cardiovascular as well as peripheral vessels, use hydraulic pressure to drive a vibratable member, and the system includes a control unit to permit the frequency or amplitude of oscillation of the vibratable member to be adjusted to suit the morphology or hardness of the target occlusion. Also disclosed is a method for adjusting the force of vibration.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 3, 2017
    Assignee: Medinol Ltd.
    Inventors: Amir Pansky, Oleg Weizman, Alexander Melamud
  • Patent number: 9765865
    Abstract: Device and method for enabling independent tuning of frequency and amplitude of a reverse crankshaft motor. The reverse crankshaft motor provides periodic reciprocating motion based on periodic rotational motion from a rotational motor. The reverse crankshaft motor includes a crankshaft structure having first and second frames with a third axle arranged between them and connected to them by hinges. An amplituder is affixed to the third axle and may communicate with an external device. As the first and second frames move toward or apart from each other, the third axle moves radially toward or away from a central axis of the crankshaft structure. The position of the third axle determines the amplitude of the periodic reciprocating motion of the amplituder. By adjusting the position of the first and second frames, the operator may adjust the amplitude independently from the frequency of the periodic rotational motion supplied by the rotational motor.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: September 19, 2017
    Assignee: Medinol Ltd.
    Inventors: Amir Pansky, Eyal Ben-Moshe, Ben Zion Spector
  • Patent number: 9615843
    Abstract: An attachment mechanism and method for attaching or coupling a guide wire to a catheter for re-canalization or opening a passage through an occlusion in a blood vessel is provided. The attachment mechanism generates friction forces against the guide wire to couple the guide wire to a catheter, which design permits a greater force to be used on the guide wire during a re-canalization procedure. The invention also encompasses use of the attachment mechanism in conjunction with active catheters, which have vibration-generating means to oscillate the distal end of the catheter or a component in the distal end of the catheter, to add vibration motion, preferably axial vibration motion, to the increased force that may be applied to the guide wire for purposes of penetrating an occlusion. The methods of the invention relate to methods of attaching the guide wire to the catheter and methods of treating a vessel having a partial or total occlusion.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: April 11, 2017
    Assignee: MEDINOL LTD.
    Inventors: Jacob Richter, Amir Pansky, Gal Demer
  • Patent number: 9603731
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 28, 2017
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9585679
    Abstract: An attachment mechanism and method for attaching or coupling a guide wire to a catheter for re-canalization or opening a passage through an occlusion in a blood vessel is provided. The attachment mechanism generates friction forces against the guide wire to couple the guide wire to a catheter, which design permits a greater force to be used on the guide wire during a re-canalization procedure. The invention also encompasses use of the attachment mechanism in conjunction with active catheters, which have vibration-generating means to oscillate the distal end of the catheter or a component in the distal end of the catheter, to add vibration motion, preferably axial vibration motion, to the increased force that may be applied to the guide wire for purposes of penetrating an occlusion. The methods of the invention relate to methods of attaching the guide wire to the catheter and methods of treating a vessel having a partial or total occlusion.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: March 7, 2017
    Assignee: MEDINOL LTD.
    Inventors: Jacob Richter, Amir Pansky, Gal Demer
  • Patent number: 9492293
    Abstract: A method and an apparatus to create a more favorable flow regime in a lumen. An artificial shape in the lumen is created to at least one of eliminate flow disturbances and enhance aspects of fluid flow through a treatment site.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: November 15, 2016
    Assignee: Medinol Ltd.
    Inventors: Yoram Richter, Elazer R. Edelman
  • Patent number: 9456910
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other to maintain the tubular shape of the helically coiled stent and prevent the polymer layer from sagging at any point between cycles of the coils.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 4, 2016
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9364358
    Abstract: Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 14, 2016
    Assignee: Medinol Ltd.
    Inventors: Itshak Cohen, Shahar Maximuk, Gilad Moiseyev
  • Patent number: 9161849
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: October 20, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9155639
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of a main stent component and a securement. The main stent component is formed from a flat strip having one or more undulating side bands that may be connected to form geometrically shaped cells and are helically wound to form a stent. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical windings contributes to maintaining the tubular shape and uniformity of the helically coiled stent. Alternatively, the flat strip may comprise a single undulating pattern. At the ends of the main stent component are end bands, which when wound, form a cylindrical ring. In one embodiment, one or more struts of the main stent component may have a width sufficient to include one or more fenestrations. The fenestrated struts may be connected by loops or turns wherein the material is narrower than that of the fenestrated struts to provide enhanced flexibility.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: October 13, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter