Patents Assigned to Medinol Ltd.
  • Patent number: 9161849
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: October 20, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9155639
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of a main stent component and a securement. The main stent component is formed from a flat strip having one or more undulating side bands that may be connected to form geometrically shaped cells and are helically wound to form a stent. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical windings contributes to maintaining the tubular shape and uniformity of the helically coiled stent. Alternatively, the flat strip may comprise a single undulating pattern. At the ends of the main stent component are end bands, which when wound, form a cylindrical ring. In one embodiment, one or more struts of the main stent component may have a width sufficient to include one or more fenestrations. The fenestrated struts may be connected by loops or turns wherein the material is narrower than that of the fenestrated struts to provide enhanced flexibility.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: October 13, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9060851
    Abstract: The present invention relates to covered endoprosthetic devices. Covered endoprosthetic devices comprise an endoprosthesis and a sheath. The sheath comprises a central portion and outer portions, wherein the central portion preferentially restricts or causes a restriction of blood flow. Blood flow can be reduced by the central portion of the sheath by varying the permeability of the sheath or by having projections on the sheath that slow blood flow. Permeability may be provided by perforations or holes in the material of the sheath or by varying the polymer structure that makes up the sheath itself. The outer portions of the sheath do not substantially reduce blood flow. Methods of using sheath-covered endoprosthetic devices of the invention to treat aneurysms, especially aneurysms in proximity to small perforator vessels or arteries, are also encompassed.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 23, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9039755
    Abstract: An expandable helical stent with a securement is provided. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristi. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent. In addition, the nestling of helical coils may prevent the polymer layer from sagging at any point between cycles of the helical coils.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 9034004
    Abstract: An apparatus, system and method for re-canalization or opening a passage through an occlusion in a blood vessel is provided. The apparatus and method, which are appropriate for both cardiovascular as well as peripheral vessels, use a pulling member and a spring element, for example a compression spring, to oscillate a vibratable member, and the system of the invention includes the apparatus and a control unit to permit the frequency or amplitude of oscillation of the vibratable member to be adjusted. Also provided is a method for oscillating a vibratable member using a pulling member and a spring element. The apparatus and system are useful not only for penetrating a total or partial occlusion, but also to improve deliverability of a catheter through a partially occluded vessel or a tortuous vessel.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 19, 2015
    Assignee: Medinol Ltd.
    Inventor: Amir Pansky
  • Patent number: 8968390
    Abstract: The present invention relates to covered endoprosthetic devices. Covered endoprosthetic devices comprise an endoprosthesis and a sheath. The sheath comprises a central portion and outer portions, wherein the central portion preferentially restricts or causes a restriction of blood flow. Blood flow can be reduced by the central portion of the sheath by varying the permeability of the sheath or by having projections on the sheath that slow blood flow. Permeability may be provided by perforations or holes in the material of the sheath or by varying the polymer structure that makes up the sheath itself. The outer portions of the sheath do not substantially reduce blood flow. Methods of using sheath-covered endoprosthetic devices of the invention to treat aneurysms, especially aneurysms in proximity to small perforator vessels or arteries, are also encompassed.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: March 3, 2015
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 8920487
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: December 30, 2014
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 8828077
    Abstract: The present invention provides a method of fabricating a drug delivery stent. In one embodiment, the method involves forming a stent pattern in a flat sheet, where the stent pattern includes reservoirs, generating a flat map of the reservoirs, filling the reservoirs with a composition based on the flat map, and then forming the filled stent pattern into a tubular shape and joining the sides. In another embodiment, the method involves forming a stent pattern in a flat sheet, generating a flat map of discrete portions of the stent pattern that are desirable locations for coating, coating the discrete portions with a composition based on the flat map, and then forming the coated stent pattern into a tubular shape and joining the sides.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: September 9, 2014
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20140031797
    Abstract: Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: MEDINOL LTD.
    Inventors: Itshak COHEN, Shahar MAXIMUK, Gilad MOISEYEV
  • Publication number: 20130245748
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 19, 2013
    Applicant: MEDINOL LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20130204350
    Abstract: An expandable helical stent with a securement is provided. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristi. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent. In addition, the nestling of helical coils may prevent the polymer layer from sagging at any point between cycles of the helical coils.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Applicant: Medinol Ltd.
    Inventor: Medinol Ltd.
  • Patent number: 8496699
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: July 30, 2013
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 8486130
    Abstract: A catheter with two balloons for implanting a stent without flaring at the ends of the stent during implantation has an outer balloon overlying an inner balloon. The length of the inner balloon is shorter than the length of the outer balloon and shorter than a stent which is mounted over both balloons. Upon inflation of the inner balloon, the inner balloon expands only the center of the stent. After the center of the stent is expanded, further application of pressure bursts the inner balloon allowing application of pressure to the outer balloon. The outer balloon is then inflated, expanding the ends of the stent.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: July 16, 2013
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 8483488
    Abstract: A method and system for generating stabilized intravascular ultrasonic images are provided. The system includes a probe instrument, having an ultrasonic signal transmitter and a reflected ultrasonic signal receiver, the reflected signals containing information about a tubular environment, and a processor and post-processor, capable of converting inputted signals into one or more, preferably a series of, images. The method for stabilizing images involves the processor and post-processor input and output. The post-processor determines the environment center at each reflection position, detects the tubular environment edges, and aligns the image center with the environment center thereby limiting image drift and stabilizing the images. The processor may also filter images to improve image stabilization and remove motion interference and/or extract the environment's 3D shape. The method and device are of particular use in a vascular lumen, where image drift may occur due to heart beat or blood flow.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 9, 2013
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Oleg Weizman, Roee Shibolet
  • Patent number: 8382821
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20120323307
    Abstract: A stent is provided with a series of short pieces or sections connected together by a bioresorbable polymer. The stent sections are designed to separate or articulate with time as the polymer biodegrades. The time of separation can be controlled by the characteristics of the bioresorbable polymer to allow the stent to be buried in neo-intima. By using a tube made of a bioresorbable polymer, the continuous covering of the tubing may inhibit embolization in the first few weeks after stent implantation within the walls of a vessel and timing for removal of the tube through formulation of the bioresorbable polymer can be controlled to occur when embolization is no longer a risk. When the detachment of the stent pieces or sections occurs, they are fixedly secured within the vessel and each is able to flex with the vessel independently of the other stent segments.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: MEDINOL LTD.
    Inventor: Jacob RICHTER
  • Patent number: 8317851
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20120283817
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other to maintain the tubular shape of the helically coiled stent and prevent the polymer layer from sagging at any point between cycles of the coils.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 8, 2012
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Patent number: 8202312
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. The stent has a reduced crimped profile due to the differing lengths of adjacent structural members within the cells, resulting in loops which are not aligned around the circumference of the stent. Also, this stent may contain a second type of square cells, which are adapted predominately to minimize flaring of the stent ends and to provide additional stiffness.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 19, 2012
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20120010690
    Abstract: A method and apparatus to create a more favorable flow regime in a lumen. An artificial shape in the lumen is created to at least one of eliminate flow disturbances and enchance aspects of fluid flow through a treatment site.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Applicant: MEDINOL LTD.
    Inventors: Yoram Richter, Elazer R. Edelman