Patents Assigned to Medtronic
  • Patent number: 9522223
    Abstract: A housing for a fluid infusion device is provided. The housing can include a first housing component including a first engagement system. The first housing component can define a first compartment and a second compartment. The first engagement system can be coupled to the second compartment and movable relative to the second compartment. The housing can also include a second housing component coupled to the first compartment of the first housing component. The second housing component can include a second engagement system. The second engagement system can be movable relative to the second housing component.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 20, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Matthew William Yavorsky
  • Patent number: 9522277
    Abstract: Techniques for performing a lead integrity test in response to, e.g., during or after saturation of a sensed signal, e.g., a cardiac electrogram (EGM) signal, are described. A lead integrity test may comprise one or more impedance measurements for one or more leads. Possible causes of saturation of a sensed signal include lead conductor or connector issues, or other lead related conditions. A lead integrity test triggered in response to the saturation may be able to detect any lead related condition causing the saturation. A lead integrity test triggered in response to the saturation may advantageously be able to detect an intermittent lead related condition, due to the temporal proximity of the test to the saturation.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: December 20, 2016
    Assignee: Medtronic, Inc.
    Inventor: Bruce D. Gunderson
  • Patent number: 9522030
    Abstract: A method for purging a cryotreatment system, in particular, for clearing moisture and thus preventing ice blockages within a fluid flow path that may be formed when moisture pockets within the fluid flow path of the system are encountered by a first injection of refrigerant at the beginning of a cryotreatment procedure. The method may include injecting refrigerant from a refrigerant source into a fluid delivery conduit at a preselected pressure for a first period of time, the refrigerant flowing from the fluid delivery conduit through a fluid injection element and into a fluid recovery conduit, and evacuating refrigerant from the fluid recovery conduit by vacuum pressure generated by the vacuum pump for a second period of time. This method may be repeated for a plurality of cycles.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 20, 2016
    Assignee: Medtronic CryoCath LP
    Inventors: Chadi Harmouche, Rachid Mahrouche, Eric Monger, Bertin Siméon, Vladimir Tzonev
  • Patent number: 9522281
    Abstract: An implantable electrical medical device includes (i) electronics configured to generate or receive an electrical signal and containing a plurality of channels through which the electrical signal may be transmitted; (ii) a first lead receptacle having a first defined number of internal contacts, wherein each of the internal contacts are independently operably coupled to a discrete channel of the electronics; and (iii) a second lead receptacle having a second defined number of internal contacts, wherein the second defined number is less than the first defined number, and wherein each of the internal contacts of the second receptacle are independently operably coupled to a discrete channel of the electronics. At least one of the internal contacts of the first lead receptacle and at least one of the internal contacts of the second lead receptacle are operably coupled to the same channel of the electronics.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 20, 2016
    Assignee: Medtronic, Inc.
    Inventor: Dale F. Seeley
  • Patent number: 9521979
    Abstract: This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a chopper amplifier to amplify an input signal prior to sampling the signal. In some examples, the techniques for controlling spectral aggressors may include generating a chopper-stabilized amplified version of an input signal based on a chopper frequency, sampling the chopper-stabilized amplified version of the input signal at a sampling rate to generate a sampled signal, and analyzing a target frequency band of the sampled signal. The chopper frequency and the sampling rate may cause spectral interference that is generated due to the chopper frequency to occur in the sampled signal at one or more frequencies that are outside of the target frequency band of the sampled signal. The techniques for controlling spectral aggressors may reduce the noise caused by the chopper frequency in the resulting sampled signal, thereby improving the quality of the signal.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: December 20, 2016
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, David L. Carlson, Peng Cong, Timothy J. Denison, David E. Linde, Randy M. Jensen
  • Patent number: 9522062
    Abstract: A mitral valve prosthesis and methods for implanting the prosthesis transapically (i.e., through the apex of the heart), transatrially (i.e., through the left atrium of the heart), and transseptally (i.e., through the septum of the heart). The prosthesis generally includes a self-expanding frame and two or more support arms. A valve prosthesis is sutured to the self-expanding frame. Each support arm corresponds to a native mitral valve leaflet. At least one support arm immobilizes the native leaflets, and holds the native leaflets close to the main frame.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 20, 2016
    Assignee: Medtronic Ventor Technologies, Ltd.
    Inventor: Yosi Tuval
  • Publication number: 20160361026
    Abstract: Techniques for using multiple physiological parameters to provide an early warning for worsening heart failure are described. A system is provided that monitors a multiple diagnostic parameters indicative of worsening heart failure. The parameters preferably include are least one parameter acquired from an implanted device, such as intrathoracic impedance. The system device derives an index of the likelihood of worsening heart failure based upon the parameters using a Bayesian approach and displays the resultant index for review by a physician.
    Type: Application
    Filed: March 29, 2011
    Publication date: December 15, 2016
    Applicant: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Amul Y. Desai, Randolph M. Biallas, Holly S. Vitense, Jodi L. Redemske
  • Patent number: 9517336
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Zhongping Yang, Rick D McVenes, Noelle C. Hurtig, Raymond W Usher
  • Patent number: 9517303
    Abstract: Apparatus are provided for infusion devices and related control systems and methods. In one embodiment, an infusion device includes a voided portion adapted to receive a shaft portion that includes a shaft coupled to a plunger of a reservoir. The shaft portion includes a detectable feature, and the infusion device includes a sensing arrangement proximate the voided portion to sense the detectable feature. In some embodiments, a control module is coupled to the sensing arrangement to determine a remaining amount of fluid in the reservoir based at least in part on the sensed position of the detectable feature. In other embodiments, the control module identifies an anomalous condition based at least in part on the sensed position of the detectable feature.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: December 13, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Afshin Bazargan, Pablo Vazquez, EJMar Fonacier, Andrew E. Weaver
  • Patent number: 9517032
    Abstract: An implantable sensor module and medical device includes a housing having an inner shell having a thickness extending between an inner wall and an outer wall and an outer layer, wherein the inner shell and the outer layer form a substantially flat portion. A shoulder extends adjacent to a diaphragm to extend the outer layer laterally away from a central medial line extending between edges of the diaphragm. A recess portion is formed between the diaphragm and an inner side of the outer layer, and an over-fill channel is formed by the outer layer extending through the outer layer from an opening formed at the outer wall to an opening formed along the inner side of the outer layer extending along the substantially flat portion.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Patent number: 9517352
    Abstract: An apparatus configured to be placed about an implantable medical device having a face with a geometric center offset from a center of a recharge coil of the device includes first and second opposing major exterior surfaces, and a continuous exterior side surface joining the first and second opposing major exterior surfaces. A cavity is defined between, and an opening is formed by, the first and second major surfaces and the continuous side surface. The opening is in communication with the cavity and is configured to allow the device to access the cavity. An asymmetric region, adjacent to the cavity, is formed between a portion of the first and second major surfaces and the continuous side surface. The asymmetric region is configured to shift the geometric center of the combined apparatus and device, when the device is received in the cavity, towards the center of the recharge coil.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: John E. Kast, Steve T. Deininger, Raymond F. McMullen
  • Patent number: 9517074
    Abstract: A blade coupling mechanism for a hand-held surgical cutting instrument includes a first coupling member including a first blade-contacting surface and a first outer perimeter sidewall adjacent the first blade contacting surface. It also includes a second coupling member including a second blade-contacting surface facing the first blade-contacting surface of the first coupling member. The second coupling member includes a second outer perimeter sidewall adjacent the second blade contacting surface. The second blade-contacting surface and the second outer perimeter sidewall meet to define an outer edge. The second coupling member including a bore through the second blade contacting surface. The bore and the second blade contacting surface meeting to define an inner edge. Blade-engaging protrusions project from at least one of the first and second blade-contacting surfaces. The protrusions are spaced closer to the outer edge than the inner edge.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: December 13, 2016
    Assignee: Medtronic PS Medical, Inc.
    Inventors: Christopher M. Boykin, Durrell G. Tidwell
  • Patent number: 9517304
    Abstract: A medical device system includes at least one controllable patient-worn or patient-carried medical device, and a plurality of controller devices that are capable of independently controlling features or functions of the patient medical device. Control commands and other data is wirelessly communicated among the patient medical device and the multiple controller devices. A number of techniques, protocols, and other measures are provided to coordinate wireless communication between the various devices in a medical device system. These control command coordination processes address situations where conflicting, redundant, or concurrent control commands might be independently issued by the multiple controller devices.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: December 13, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson
  • Publication number: 20160354500
    Abstract: Medical devices are typically sterilized in processes used to manufacture such products and their sterilization by exposure to radiation is a common practice. Radiation has a number of advantages over other sterilization processes including a high penetrating ability, relatively low chemical reactivity, and instantaneous effects without the need to control temperature, pressure, vacuum, or humidity. Unfortunately, radiation sterilization can compromise the function of certain components of medical devices. For example, radiation sterilization can lead to loss of protein activity and/or lead to bleaching of various dye compounds. Embodiments of the invention provide methods and materials that can be used to protect medical devices from unwanted effects of radiation sterilization.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Sarkis Aroyan, Jesper Svenning Kristensen
  • Patent number: 9510763
    Abstract: Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M. Gillberg, Robert W. Stadler
  • Patent number: 9511234
    Abstract: Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Employing sums of the measured activation times to select one of the left ventricular electrodes for delivery of subsequent pacing pulses.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W Stadler
  • Patent number: 9511233
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) is described. In one or more other embodiments, SD is implanted into a patient's heart. Electrical signals are then sensed which includes moderately lengthened QRS duration data from the patient's heart. A determination is made as to whether cardiac resynchronization pacing therapy (CRT pacing) is appropriate based upon the moderately lengthened QRS duration in the sensed electrical signals. The CRT pacing pulses are delivered to the heart using electrodes. In one or more embodiments, the SD can switch between fusion pacing and biventricular pacing based upon data (e.g. moderately lengthened QRS, etc.) sensed from the heart.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventor: Aleksandre T. Sambelashvili
  • Patent number: 9513104
    Abstract: Systems and methods for alignment and detection of a consumable component are disclosed herein. For example, a method for determining if a consumable component is coupled to a durable component to enable dispersion of a medicine is provided. The method includes determining if a signal from an electrical contact coupled to a durable component has changed an electrical state, and comparing the signal to a reference signal from a second electrical component coupled to the durable component. The method includes sampling a sensor coupled to the durable component to acquire sensor data indicative of a magnetic field observed by the sensor, and outputting data that a consumable component is coupled to the durable component if the signal is different than the reference signal, and the sensor data is within an acceptable range.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: December 6, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Juan M. Alderete, Jr., R. Marie Tieck
  • Patent number: 9510888
    Abstract: An intravascular ablation device, including a flexible elongate body; an expandable element positioned on the elongate body; a radiofrequency or electroporation treatment segment located distally of the expandable element; a cryogenic coolant source in fluid communication with an interior of the expandable element; and a radiofrequency or electroporation energy source in communication with the radiofrequency or electroporation treatment segment.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: December 6, 2016
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9511217
    Abstract: An introducer for a medical lead, the introducer having an arcuate component for creating an arcuate path in a patient. When used to percutaneously implant a medical device such as a medical lead with electrodes, the implanted lead has an arcuate configuration. The implanted lead can be used to at least partially encircle or bracket a region of chronic pain and provide therapeutic electrical signals to the region.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, John E. Kast, Gabriela C. Molnar, Glenna L. Case, Lisa M. Johanek, Phillip C. Falkner