Patents Assigned to Medtronic
  • Patent number: 9486604
    Abstract: A tray and packaging system for a prosthetic valve delivery system permits conversion from a storage and/or shipping configuration to a set up and preparation configuration. In a first configuration, a delivery system can be supported by first and second main trays with the elongate catheter of the delivery system arranged to extend linearly from the first main tray to the second main tray, and in a second configuration, the delivery system can be supported by the first and second main trays with the elongate catheter of the delivery system turned back in a U-shaped manner with the deployment portion of the delivery system positioned to the side of the control handle portion of the delivery system.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 8, 2016
    Assignee: Medtronic, Inc.
    Inventors: Robert Murray, Sameer Upadhyaya, Mark Casley, Patrick Macaulay, Ak Masud, Paul Cassidy, David Clarke
  • Patent number: 9486346
    Abstract: A stent-graft delivery system includes a balloon, a sleeve disposed over the balloon, and a stent graft mounted over the sleeve. The sleeve includes a weakened area between a first end and a second end of the sleeve such that when the balloon is expanded, the balloon expands from a center portion of the balloon towards the ends of the balloon. The weakened area of the sleeve may be a slit, a thinner wall section, grooves, notches, or other weakening features. The sleeve may be adhesively attached to an outer shaft of the catheter or to an outer surface of the balloon.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 8, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventor: Jeffery Argentine
  • Patent number: 9486151
    Abstract: A method and system of cardiac pacing is disclosed. A baseline rhythm is determined using a plurality of body-surface electrodes. A set of baseline functional electrical metrics is determined in response to determining the baseline rhythm. Resynchronization pacing is delivered using a right ventricular electrode and a pacing left ventricular electrode or only with a left ventricular electrode. A set of functional electrical metrics relating to cardiac depolarization and repolarization is determined in response to resynchronization pacing. A determination is made as to whether relative reduction of at least one functional electrical metric from the set of functional electrical metrics exceeds X % of its corresponding value from the set of baseline functional electrical metrics. A determination is made as to whether an absolute value of at least one electrical metric from the set of the functional electrical metrics is less than Y ms.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 8, 2016
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M Gillberg
  • Patent number: 9486155
    Abstract: A method and medical device for determining a P-wave of a cardiac signal that includes sensing the cardiac signal, determining a P-wave sensing window in response to the sensed cardiac signal, the P-wave sensing window having a first portion and a second portion, determining signal characteristics of the sensed cardiac signal within the first portion and within the second portion, comparing the determined signal characteristics, and determining the P-wave in response to the comparing.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 8, 2016
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell
  • Publication number: 20160317821
    Abstract: A method of manufacturing an implantable medical device includes manufacturing a hermetic feedthrough by providing a first sheet of unfired ceramic material, forming one or more holes through the sheet, inserting a first conductive material into one of the holes, and forming a pad in electrical contact with the first conductive material in one of the holes, wherein the pad comprises a plurality of layers and has a thickness of at least 50 micrometers, at least one layer comprising a second conductive material having a different composition than the first conductive material. The method further includes co-firing the unfired ceramic material, the first conductive material, and the second conductive material. The method further includes coupling the feedthrough to an encasement structure of the implantable medical device.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Applicants: Medtronic, Inc., Kyocera Corporation
    Inventors: Kengo Morioka, Keiichi Fujii, Arne Knudsen, Shingo Satou, Hidekazu Otomaru, Hiroshi Makino, Andrew Thom, Markus Reiterer, Gordon Munns, Thomas Miltich, Joyce Yamamoto
  • Publication number: 20160317806
    Abstract: A method of manufacturing an implantable medical device having reduced MRI image distortion, includes producing an implantable medical device. The implantable medical device has a configuration that comprises a housing and one or more internal components disposed within the housing. The configuration is based upon a design process that includes creating a first prototype, determining the aggregate relative magnetic permeability of the first prototype, and modifying the design of the first prototype by at least one of (a) selecting and adding a diamagnetic shimming material to the first prototype or (b) repositioning one or more internal components of the first prototype. Modifying the design results in a modified design that is the configuration for the implantable medical device.
    Type: Application
    Filed: June 17, 2016
    Publication date: November 3, 2016
    Applicant: Medtronic, Inc.
    Inventors: John Kast, Carl D. Wahlstrand, Mark J. Conroy, Erik R. Scott
  • Publication number: 20160317053
    Abstract: Neuromodulation catheters with nerve monitoring features for transmitting digital neural signals and associated systems and methods are disclosed herein. A neuromodulation catheter configured in accordance with some embodiments of the present technology can include, for example, a handle and an elongated shaft attached to the handle. The shaft can have a proximal portion and a distal portion configured to be moved within a lumen of a blood vessel of a human patient. The neuromodulation catheter can further include an array of contacts at the distal portion of the shaft and a digitizer at the handle or the shaft. The contacts can be configured to detect analog neural signals from within the blood vessel. The digitizer can be configured to receive the analog neural signals from the contacts, digitize the analog neural signals into digital neural signals, and transmit the digital neural signals to a read/write module external to the patient.
    Type: Application
    Filed: April 11, 2016
    Publication date: November 3, 2016
    Applicants: Medtronic Ardian Luxembourg S.a.r.l., Medtronic Ardian Luxembourg S.a.r.l.
    Inventor: Nishant R. Srivastava
  • Patent number: 9480823
    Abstract: A system includes an elongate catheter having a self-expanding frame disposed at the distal end of the catheter. The frame includes a plurality of longitudinal struts defined by parallel slots. The frame may be constrained into a radially compressed configuration for delivery to a treatment site. A helical balloon is mounted about the frame. Upon release from the constraining mechanism, the frame returns to a heat-set radially expanded configuration to initiate dilation of a treatment site in a patient. Inflating the balloon around the expanded frame further expands the initial radial dilation of the site. Proximal and distal ends of the slots are unobstructed by the balloon to permit flow of a fluid through the slots and through a lumen defined by an interior surface of the balloon when the frame is in the radially expanded configuration.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 1, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Ellen Roche, Kevin O'Sullivan
  • Patent number: 9480839
    Abstract: A lead delivery apparatus and a method of delivering a medical lead to an anatomic target site. The method includes inserting a hydraulic plug into an internal delivery lumen of a delivery shaft, and coupling a medical lead to the hydraulic plug. Hydraulic pressure is applied to the hydraulic plug through the delivery lumen, thereby moving the hydraulic plug toward an anatomic target site, and advancing the medical lead toward the target site.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Stanten C. Spear, Lindsey M. Tobin
  • Patent number: 9480846
    Abstract: Provided is a portable controller and associated method that provides a patient or caregiver the ability to recharge and alter the parameters of an implanted medical device, while allowing the patient substantially unobstructed mobility. To enable mobility, the controller may be worn on a belt or clothing. The controller also allows the patient to turn device stimulation on and off, check battery status, and to vary stimulation parameters within ranges that may be predefined and programmed by a clinician. The controller communicates with the medical device to retrieve information and make parameter adjustments using wireless telemetry, and it can send and receive information from several feet away from the implanted medical device. Charging of a battery contained in the implanted medical device is achieved via an inductive radio frequency link using a charge coil placed in close proximity to the medical device.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 1, 2016
    Assignee: Medtronic Urinary Solutions, Inc.
    Inventors: Robert B. Strother, James E. Barber, Joseph J. Mrva, Christopher A. Thierfelder, Maria E. Bennett, Geoffrey B. Thrope, Danny R. Pack, Stuart F. Rubin
  • Patent number: 9484940
    Abstract: Techniques including methods and apparatus for calibrating a local clock are provided in an implantable medical device. The implantable medical device includes a telemetry module for receiving a remote signal transmitted by an external device. The received signal is provided to a clocking circuit having a clocking circuit for computation of a calibration factor based on a difference between phases of the clock signal generated by the local clock and transitions in the received remote signal. The calibration factor may be derived as a function of an edge of the clock signal lagging or leading relative to a corresponding edge of the remote signal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventor: Melvin P. Roberts
  • Patent number: 9480557
    Abstract: A prosthetic valve including a wire frame having a generally tubular body portion, an interior area, a longitudinal axis, a first end comprising a plurality of crowns, and a second end comprising a greater number of crowns than the first end. The wire frame includes a plurality of adjacent rows of modified diamond-shaped structures extending between the first and second ends. The prosthetic valve further includes a valve structure that includes a plurality of leaflets and that is attached within the interior area of the wire frame.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventors: Gianfranco M. Pellegrini, Mike Krivoruchko, Finn O. Rinne, Matthew J. Rust
  • Patent number: 9480558
    Abstract: A transcatheter valve having an expandable frame and a collapsible multi-portion skirt within the frame are provided with seams between the portions of the skirt that are located to cooperate with features of the frame and thereby reduce the exposure of the seams.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventor: Alaena Destefano
  • Patent number: 9480844
    Abstract: A method and apparatus for detecting a cardiac event in a medical device that includes sensing a cardiac signal, detecting a cardiac event in response to the sensed signal, determining whether an interval associated with the cardiac signal is less than an interval threshold, determining a noise metric in response to an interval associated with the cardiac signal being less than the interval threshold, determining whether the noise metric is greater than a noise metric threshold, and determining whether to inhibit detecting in response to determining whether an interval associated with the cardiac signal is less than the interval threshold and determining whether the noise metric is greater than the noise metric threshold.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Richard P. M. Houben, Tim Dirk Jan Jongen
  • Patent number: 9480556
    Abstract: A prosthetic heart valve for functionally replacing a previously implanted prosthetic heart valve is disclosed. The prosthetic heart valve includes a collapsible support structure with leaflets and anchors mounted to the support structure. The support structure also includes an inflow end and an outflow end. The anchors include a radially outwardly extending first anchor proximate to the inflow end and a radially outwardly extending second anchor proximate to the outflow end. The first anchor includes a first configuration and the second anchor includes a second configuration where the first configuration is different than the second configuration. The previously implanted prosthetic heart valve serves as a platform for securement of the prosthetic heart valve to the patient's native tissue.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 1, 2016
    Assignee: Medtronic, Inc.
    Inventors: Jose M. Revuelta, Jack D. Lemmon, Timothy R. Ryan
  • Patent number: 9480415
    Abstract: An electromagnetic device includes a jig and multiple wires. The jig includes a center member and coil-separating blocks. The coil-separating blocks protrude from the center member and are separated from each other to provide a coil channels. Each of the wires is wrapped on the jig, around the center member, and in one of the coil channels to form one of a multiple coils. Each of the coils is configured to connect to an electromagnetic navigation system and generate respective electromagnetic fields to be emitted relative to a subject.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 1, 2016
    Assignee: Medtronic Navigation, Inc.
    Inventors: Andrew Wald, Bruce M. Burg, Steven L. Hartmann, Brad Jacobsen, Jeffrey Swetnam
  • Patent number: 9474563
    Abstract: Methods and apparatus are provided for treating contrast nephropathy, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 25, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9474601
    Abstract: A heart valve assembly includes a base including a multi-lobular annular shape within a plane, a valve member or other annular body including a multi-lobular shape complementary to the shape of the base, and cooperating connectors on the base and the annular body for connecting the annular body to the base. The base includes an anchoring ring, and a flexible cuff for attaching the base to a biological annulus. The base and the annular body include guides for aligning their multi-lobular shapes, e.g., visual, tactile, or other markers, or tethers that extend from the base that are slidable through the annular body. During use, the base is attached to a biological annulus, the annular body is directed adjacent the annulus, oriented such that the multi-lobular shape of the annular body valve member is aligned with the base, and the annular body is attached to the base.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 25, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael J. Drews, Donnell W. Gurskis, Stephen R. Bacich
  • Patent number: 9474457
    Abstract: A method and system of cardiac pacing is disclosed. A baseline rhythm is determined using a plurality of body-surface electrodes. A set of baseline functional electrical metrics is determined in response to determining the baseline rhythm. Resynchronization pacing is delivered using a right ventricular electrode and a pacing left ventricular electrode or only with a left ventricular electrode. A set of functional electrical metrics relating to cardiac depolarization and repolarization is determined in response to resynchronization pacing. A determination is made as to whether relative reduction of at least one functional electrical metric from the set of functional electrical metrics exceeds X % of its corresponding value from the set of baseline functional electrical metrics. A determination is made as to whether an absolute value of at least one electrical metric from the set of the functional electrical metrics is less than Y ms.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: October 25, 2016
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M Gillberg
  • Publication number: 20160302857
    Abstract: Devices, systems, and methods for the selective positioning of an intravascular neuromodulation device are disclosed herein. Such systems can include, for example, an elongated shaft and a therapeutic assembly carried by a distal portion of the elongated shaft. The therapeutic assembly is configured for delivery within a blood vessel. The therapeutic assembly can include a pre-formed shape and can be transformable between a substantially straight delivery configuration; and a treatment configuration having the pre-formed helical shape to position the therapeutic assembly in stable contact with a wall of the body vessel. The therapeutic assembly can also include a mechanical decoupler operably connected to the therapeutic assembly that is configured to absorb at least a portion of a force exerted on the therapeutic assembly by the shaft so that the therapeutic assembly maintains a generally stationary position relative to the target site.
    Type: Application
    Filed: October 23, 2014
    Publication date: October 20, 2016
    Applicant: Medtronic Ardian Luxembourg S.A.R.L.
    Inventors: Martin ROTHMAN, Justin GOSHGARIAN, William CHANG