Abstract: A method and system for creating permanent lesions in an area of target tissue, such as tissue at or proximate a junction between a pulmonary vein and the left atrium. The method may generally include positioning a medical device in contact with a pulmonary vein ostium, ablating the tissue, and recording a plurality of temperature measurements from one or more of three temperature sensors. The device may include an occlusion element in communication with a coolant source, a first sensor located distal of the occlusion element, a second sensor located proximal of the occlusion element, and a third sensor located in the occlusion element. One or more temperature measurements may be compared with each other to assess occlusion of the pulmonary vein, and/or may be compared with a set of reference temperatures to predict a real-time temperature within the target tissue.
Type:
Grant
Filed:
November 16, 2021
Date of Patent:
July 9, 2024
Assignee:
Medtronic CryoCath LP
Inventors:
Dan Wittenberger, Jean-Pierre Lalonde, Stephen A. Howard
Abstract: A method for implanting a medical lead. The method includes advancing a tunneling tool posteriorly proximate the caudal end of the sternum toward a first location. The tunneling tool is advanced superiorly underneath the sternum through the anterior mediastinum from the first location to a second location cranial to the first location. A guidewire is advanced from the first location to the second location. A medical lead is slid along at least a portion of the guidewire, the medical lead at least substantially spanning the distance between the first location and the second location.
Type:
Grant
Filed:
November 23, 2020
Date of Patent:
July 9, 2024
Assignee:
Medtronic, Inc.
Inventors:
Amy T. Thompson-Nauman, James K. Carney, Melissa G. T. Christie, Kenneth C. Gardeski
Abstract: Disclosed is a system for recharging a selected power source wirelessly, such as through a power transmission. The power source may be positioned within a subject and be charged wirelessly through the subject, such as tissue of the subject. A thermal transfer system is provided to transfer or transport thermal energy from a first position to a second position, such as away from the subject.
Abstract: The techniques of this disclosure generally relate to an iliac branch device having an external iliac body, a common iliac branch, and an internal iliac branch. A diameter of the proximal opening of the common iliac branch is greater than a diameter of a distal opening of the external iliac body. The iliac branch device is configured to be deployed without going up and over the aortic bifurcation and without using some form of supra-aortic antegrade access such as through brachial or axillary artery access. This simplifies the procedure and reduces procedure time thus maximizing the success rate of the procedure and allows the procedure to be performed on a broad patient population.
Abstract: A medical device system is configured to guide implantation of a pacing electrode for left bundle branch pacing. The system includes a medical device having a processor configured to receive at least one cardiac electrical signal, determine a feature of the cardiac electrical signal, compare the feature to left bundle branch signal criteria, and determine a left bundle branch signal in response to the feature meeting the left bundle branch signal criteria. The system includes a display unit configured to generate a user feedback signal indicating advancement of a pacing electrode into a left portion of a ventricular septum in response to the processor determining the left bundle branch signal.
Type:
Grant
Filed:
August 11, 2020
Date of Patent:
July 2, 2024
Assignee:
Medtronic, Inc.
Inventors:
Xiaohong Zhou, Wade M. Demmer, Robert W. Stadler
Abstract: A hemostatic sealer includes a handle having a switch to activate a source of thermal energy and a thermal assembly coupled to the handle. The thermal assembly includes an electrically resistive material disposed on an electrically insulative substrate. The resistive material is coupled to the switch to receive the source of thermal energy.
Abstract: Disclosed is a system for imaging a system. The system may be operated to acquire image data of a subject in one or more manners. The image data acquired may be used to various purposes, such as generating an image for display, navigating a procedure, or other appropriate procedures.
Abstract: A delivery system for delivering an endovascular graft within a blood vessel. The delivery system includes a tip assembly including a tip and a sleeve having a proximal end. The delivery system includes a tip capture mechanism. The tip assembly is configured to move axially relative to the tip capture mechanism and between a delivery position and a release position. The tip capture mechanism includes a landing zone. The delivery system includes a travel limiter configured to align the proximal end with the landing zone when the tip assembly is in the release position to facilitate removal of the delivery system from the blood vessel.
Abstract: In an implanted medical device system, an internal controller, external power transmitter and methods for monitoring and dynamically managing power in an implanted medical device system are disclosed. According to one aspect, an internal controller is configured to provide power to a motor of an implanted medical device, the power being drawn from at least one of an internal battery and an internal coil, the at least one of the internal battery and the internal coil providing a supplied voltage. The internal controller includes processing circuitry configured to switch to one of the internal battery, the internal coil and a combination of the internal battery and the internal coil, based on a comparison of the supplied voltage to a threshold.
Type:
Grant
Filed:
December 22, 2020
Date of Patent:
July 2, 2024
Assignee:
Medtronic, Inc.
Inventors:
Joel B. Artmann, Jacob A. Roe, Jonathan P. Roberts, David J. Peichel
Abstract: A method of determining a pulsed field ablation waveform parameter for creating a desired lesion characteristic in cardiac tissue. The method of provides an electrosurgical generator configured to deliver electroporation pulses, the generator configured to: load predetermined waveform parameters (yi); load predetermined modeling data (xi); accept entry of a user inputted desired lesion characteristic (ui); and determine at least one corresponding pulsed field ablation waveform parameter based on (ui), (yi); and (xi).
Type:
Grant
Filed:
January 18, 2022
Date of Patent:
July 2, 2024
Assignee:
Medtronic, Inc.
Inventors:
Brian T. Howard, Steven J. Fraasch, Mark T. Stewart, John Vandanacker
Abstract: An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Type:
Grant
Filed:
July 26, 2021
Date of Patent:
July 2, 2024
Assignee:
Medtronic, Inc.
Inventors:
Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg, Trent M. Fischer, Elizabeth A. Schotzko
Abstract: Systems, devices and methods are disclosed for a prescription-regulated software application and an associated medical device. In some aspects, a smart medicine-injection device (e.g., smart insulin pen) is configured to be in communication with a patient's companion device (e.g., smartphone) having a software application (prescription app) that serves the patient as a complimentary medical device to the smart medicine-injection device, in which only certain features and functionalities of the prescription app are fully operable based on device pairing with the smart medicine-injection device to unlock medical device capabilities only available to the patient through prescription.
Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of tune and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
Type:
Grant
Filed:
September 24, 2021
Date of Patent:
July 2, 2024
Assignee:
Medtronic, Inc.
Inventors:
David A. Dinsmoor, Kristin N. Hageman, Hank Bink
Abstract: A branchable stent graft including a tubular body and stents attached to and supporting the tubular body. The tubular body extends along a longitudinal axis and includes proximal and distal ends. The stents include first and second stents. The stents circumferentially extend around the tubular body. The first and second stents are spaced apart along the longitudinal axis of the tubular body. The first stent includes alternating crests and troughs forming peaks and valleys therebetween. The tubular body includes access regions arranged circumferentially spaced around the tubular body. The access regions are confined within the peaks and/or valleys of the first stent. The access regions include peripheries defining openings covered with graft material regions.
Abstract: An inflatable bone tamp for performing a minimally invasive surgical procedure includes an outer shaft defining an internal lumen, an inflatable structure coupled to the outer shaft, and an inner shaft movably disposed within the internal lumen and coupled to a distal end region of the inflatable structure. The internal lumen is sized to receive the inflatable structure, such that by moving the inner shaft relative to the outer shaft, the inflatable structure can be retracted into the internal lumen (and likewise can be extended from within the internal lumen for deployment in bone). This retraction capability can beneficially protect the inflatable structure during positioning/removal, and can also enhance recovery from radial tears of the inflatable structure.
Abstract: A patient tracking device for insertion into an oral cavity includes a sensor housing comprising a first surface shaped to correspond to a pallet within the oral cavity. At least a portion of the first surface affixes the sensor housing to the oral cavity. An electromagnetic sensor is coupled to the sensor housing.
Abstract: Disclosed is a valve assembly operable to selectively control a flow or passage of a fluid. The valve assembly may be applied to any appropriate mechanism such as a hydrocephalus shunt, fluid draining sewage system, or tank holding system. The valve assembly disclosed may include a selected profile for various applications.
Abstract: An implantable lead system may include an adjustable lead assembly. The lead assembly may include a fixation member and an implantable lead slidably coupled to and rotatable relative to the fixation member. The implantable lead system may include a telescoping delivery system. The delivery system may include an outer catheter and an inner catheter slidably coupled to and rotatable relative to the outer catheter. The lead assembly may be implanted in a cardiac septal wall through the delivery assembly.
Type:
Grant
Filed:
October 14, 2020
Date of Patent:
June 25, 2024
Assignee:
Medtronic, Inc.
Inventors:
Douglas S. Hine, Zhongping Yang, William J. Clemens
Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a user involves determining a current value for a physiological condition of the user influenced by the fluid violates a first threshold value, determining a predicted value for the physiological condition of the user violates a second threshold value, and automatically altering operation of the infusion device to modify delivery of the fluid to the user after determining the predicted value violates the second threshold value when the current value violates the first threshold value.
Type:
Grant
Filed:
March 4, 2021
Date of Patent:
June 25, 2024
Assignee:
Medtronic MiniMed, Inc.
Inventors:
Cesar C. Palerm, Louis J. Lintereur, Salman Monirabbasi, Kris R. Holtzclaw, Lane Desborough