Patents Assigned to Medtronics, Inc.
  • Patent number: 11786739
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic Inc.
    Inventors: Maureen E. Lybarger, Jian Cao, Wade M. Demmer, Michael W. Heinks, Jean E. Hudson, Michael Kemmerer, James J. St. Martin, Todd J. Sheldon
  • Patent number: 11786743
    Abstract: A medical device stores a set of stimulation profiles, wherein each stimulation profile of the set of stimulation profiles is associated with a set of values for stimulation parameters; selects from the set of stimulation profiles, one or more active stimulation profiles; produces, by a stimulation generator, multiple electrical pulses based on the one or more active stimulation profiles; and separately controls parameter values of respective individual pulses of the multiple pulses.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic, Inc.
    Inventors: Erik J. Peterson, Mandla Shongwe
  • Patent number: 11786367
    Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 17, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, Michael J. Tuchek
  • Patent number: 11786734
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to monitor lead position and/or detect lead migration. An example system includes sensing circuitry configured to sense an ECAP signal, and processing circuitry. The processing circuitry controls the sensing circuitry to detect, after delivery of an electrical stimulation pulse, a current ECAP signal, and determines one or more characteristics of the current ECAP signal. The processing circuitry also compares the one or more characteristics of the current ECAP signal to corresponding one or more characteristics of a baseline ECAP signal, and determines, based on the comparison, a migration state of the electrodes delivering the electrical stimulation pulse. Additionally, the processing circuitry outputs, based on the migration state, an alert indicative of migration of the electrodes.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jiashu Li, David A. Dinsmoor, Duane L. Bourget, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Patent number: 11786721
    Abstract: A controller for an implantable blood pump, having processing circuitry configured to control an operating speed of an impeller of the implantable blood pump. The processing circuitry being further configured to control activation and deactivation of a sleep mode. During the sleep mode the processing circuitry being configured to measure a level of suction by detecting suction during a predetermined time interval, recording the time at which suction occurred during the predetermined time interval, and generating a graph demonstrating the measured level of suction. The measured level of suction being a percentage of time the implantable blood pump experienced suction during the predetermined time interval. The processing circuitry being configured to reduce the operating speed of the impeller if the measured level of suction exceeds a predetermined threshold.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: October 17, 2023
    Assignee: Medtronic, Inc.
    Inventors: D'Anne E. Kudlik, Robert W. Stadler
  • Patent number: 11779765
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Patent number: 11779370
    Abstract: Subcutaneous implantation tools and methods of implanting a subcutaneous device using the same. The tool may include a tool body having a longitudinally extending recess having a distal opening and having a tunneler at a distal end of the tool body extending from the distal opening of the recess. The tool may include a plunger slidably fitting within at least a portion of the tool body recess. The recess may be configured to receive an implantable device and the tunneler preferably extends distally from the recess at a position laterally displaced from the device when the device is so located in the recess. Movement of the plunger distally within the recess advances the device distally out of the recess and alongside of and exterior to the tunneler.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: October 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: Matthew T. Vanderpool, Michael R. Klardie, Kris A. Peterson
  • Patent number: 11779255
    Abstract: A medical device is configured to receive sensed cardiac event data including a value of a feature determined from each one of a plurality of cardiac events sensed from a cardiac signal according to a first setting of a sensing control parameter. The medical device is configured to classify each value of the feature of each one of the sensed cardiac events as either a predicted sensed event or a predicted undersensed event according to a second setting of the sensing control parameter that is less sensitive to sensing cardiac events than the first setting. The medical device is configured to determine a predicted sensed event interval between each consecutive pair of the predicted sensed events and predict that an arrhythmia is detected or not detected based on the predicted sensed event intervals.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: October 10, 2023
    Assignee: Medtronic, Inc.
    Inventor: Robert T. Sawchuk
  • Patent number: 11776691
    Abstract: Techniques that include applying machine learning models to episode data, including a cardiac electrogram, stored by a medical device are disclosed. In some examples, based on the application of one or more machine learning models to the episode data, processing circuitry derives, for each of a plurality of arrhythmia type classifications, class activation data indicating varying likelihoods of the classification over a period of time associated with the episode. The processing circuitry may display a graph of the varying likelihoods of the arrhythmia type classifications over the period of time. In some examples, processing circuitry may use arrhythmia type likelihoods and depolarization likelihoods to identify depolarizations, e.g., QRS complexes, during the episode.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 3, 2023
    Assignee: Medtronic, Inc.
    Inventors: Tarek D. Haddad, Niranjan Chakravarthy, Donald R. Musgrove, Andrew Radtke, Eduardo N. Warman, Rodolphe Katra, Lindsay A. Pedalty
  • Patent number: 11771494
    Abstract: A method and apparatus for creating lesions in a tissue comprising a puncturing member and a probe. The puncturing member comprises a body with a proximal portion comprising a hub, a distal portion comprising a conductive tip, and a lumen extending between the proximal and distal portion. The probe comprises a handle at the proximal end and a probe body, wherein the probe body is dimensioned to extend through the lumen of the puncturing member, and wherein the probe body comprises at least one displacement portion that is biased to contact the inner wall of the puncturing member when the probe is inserted into the puncturing member, whereby when the probe body contacts the inner wall, energy is delivered from the probe to the conductive tip of the puncturing member.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: October 3, 2023
    Assignee: Medtronic, Inc.
    Inventors: Suleman Azam, Ryan Vadori, Carolyn Holladay, Robert Harrison
  • Patent number: 11771553
    Abstract: The invention relates to a prosthetic valve (1) for regulating fluid flow between an upstream side (4) and a downstream side (5) and being operable between an open status and a closed status. The prosthetic valve comprises: —an orifice (2) arranged in a surrounding member (3) and extending between the upstream side (4) and the downstream side (5) wherein in the open status of the prosthetic valve (1) the fluid flow through the orifice is maximally enabled and wherein in the closed status of the prosthetic valve the fluid flow through the orifice in a restriction direction (21) from the downstream side (5) to the upstream side (4) is restricted; and—a leaflet (6) arranged in the orifice and being operable between an open status corresponding to the open status of the prosthetic valve and a closed status corresponding to the closed status of the prosthetic valve.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: October 3, 2023
    Assignee: Medtronic, Inc.
    Inventors: Richard Cornelussen, Asimina Glynou, Pascalle Reiters, Robert Vestberg, Ulrich Wolfhard
  • Patent number: 11771554
    Abstract: A transcatheter valve prosthesis includes a stent and a prosthetic valve disposed within the stent. The stent is balloon expandable and includes an inflow portion, an outflow portion, and a transition portion extending between the inflow portion and the outflow portion. A diameter of an inflow end of the transcatheter valve prosthesis is greater than a diameter of an outflow end of the transcatheter valve prosthesis. The transcatheter valve prosthesis has a tapered profile along an entire height thereof when in the stent is in the expanded configuration. The inflow end of the transcatheter valve prosthesis is configured to sit within and contact an aortic annulus of the native aortic valve and the outflow end of the transcatheter valve prosthesis being configured to float within an ascending aorta without contacting the ascending aorta due to the tapered profile of the transcatheter valve prosthesis.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: October 3, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Justin Peterson, Tracey Tien, Michael Krivoruchko, Yas Neuberger, Stuart Kari, Justin Goshgarian
  • Patent number: 11770016
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie R. Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 11766556
    Abstract: A medical fixation device which may include an elongate body with a proximal portion, a distal portion, and define a longitudinal axis extending therethrough. A first fixation member on the proximal portion of the elongate body and a second fixation member on the distal portion of the elongate body may also be included with the medical fixation device. The first fixation member and the second fixation member may each have a delivery configuration in which the first fixation member and the second fixation member are collapsed along the longitudinal axis, and an anchoring configuration in which the first fixation member and the second fixation member each extend radially outward from the elongate body, define a septal aperture therebetween, and each have a tip facing away from each other.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: September 26, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Andrea J. Asleson, Michael P. Campbell, Teresa Whitman, Keith D. Anderson, Bridget A. Portway
  • Patent number: 11770017
    Abstract: Systems and methods for improved wireless recharging efficiency and decreased processing requirements are described. A plurality of duty cycle/input voltage pairs are stored in a recharger, corresponding to three subsets: a first subset corresponding to a constant minimum input voltage and an increasing duty cycle; a second subset corresponding to a constant duty cycle and an increasing input voltage; and a third subset corresponding to a maximum input voltage and an increasing duty cycle.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brett Otteson, Charles M. Nowell, Jr., Michael J. Hage
  • Patent number: 11766538
    Abstract: Systems and methods for manufacturing an elongate medical device including various surface features. The system including a heating cartridge, a heating element, a filament handling system, a substrate handling system, a controller, and one or more additional components adapted to form the surface features on the medical device. The heating element melts a filament material within the heating cartridge to form a jacket of the medical device and the one or more additional components engages the outer surface of the jacket to create surface features.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jonathan E. Baxter, Kristin M. Johnson, Gregory N. Nesseth, Jay T. Rassat
  • Patent number: 11766273
    Abstract: A reservoir of a system for deploying an implantable lead to an extravascular location delivers a flow of fluid through a lumen of one or both of a tunneling tool and an introducer of the system. In some cases, the tunneling tool includes a pressure sensor assembly for monitoring a change in a pressure of the flow through the lumen thereof. Alternately, or in addition, a flow-controlled passageway, through which the flow of fluid from the reservoir is delivered to the lumen of the introducer, includes a compliant chamber to hold a reserve of the fluid. Fluid from the reserve may be drawn into the lumen of the introducer as the tunneling tool is withdrawn therefrom. Alternately, the introducer may include a chamber located between two seals, wherein fluid that fills the chamber is drawn distally into the lumen of the introducer, as the tunneling tool is withdrawn therefrom.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Rick D. McVenes, Zhongping C. Yang
  • Patent number: 11762031
    Abstract: An electrochemical cell charging apparatus includes a charger to charge one or more electrochemical cells and a computing apparatus. The computing apparatus includes one or more processors and is operatively coupled to the charger. The computing apparatus is configured to charge an electrochemical cell using the charger, determine one or more indicators of the state of health of the electrochemical cell, and determine the state of health of the electrochemical cell based on the determined one or more indicators.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 19, 2023
    Assignee: Medtronic, Inc.
    Inventors: Rajesh V. Iyer, Gordon O. Munns, John M. Pantazis, Anthony David Calderoni, Laura E. McCalla, Eric Wigforss
  • Patent number: 11759647
    Abstract: A medical device and method conserve electrical power used in monitoring cardiac arrhythmias. The device includes a sensing circuit configured to sense a cardiac signal, a power source and a control circuit having a processor powered by the power source. The control circuit is configured to operate in a normal state by waking up the processor to analyze the cardiac electrical signal for determining a state of an arrhythmia. The control circuit switches from the normal state to a power saving state that includes waking up the processor at a lower rate than during the normal state.
    Type: Grant
    Filed: August 21, 2021
    Date of Patent: September 19, 2023
    Assignee: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Wade M. Demmer, Vincent P. Ganion, Yanina Grinberg, Paul R. Solheim
  • Patent number: 11759632
    Abstract: An example fixation component for an implantable medical device (IMD) includes a base and a plurality of tines configured be deployed with a target deployment stiffness to engage tissue a target implant site while maintaining a target deflection stiffness after deployment. The base defines a longitudinal axis of the fixation component and is fixedly attached near the distal end of the IMD. Each tine is spaced apart from one another around a perimeter of the distal end of the IMD and extend from the base. A shape of each tine is selected to control each of the target deployment stiffness and target deflection stiffness.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: September 19, 2023
    Assignee: Medtronic, Inc.
    Inventors: Xin Chen, Vladimir Grubac, Brian P. Colin, Kathryn Hilpisch, Michael D. Eggen