Patents Assigned to Medtronics, Inc.
  • Patent number: 11826561
    Abstract: A system comprises a hand-held burr hole device insertion tool having a first end and a second end, the first end configured for simultaneous application of a normal force to two or more attachment points of a burr hole device component is disclosed.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventor: Kyle J. Boughner
  • Patent number: 11826562
    Abstract: An implantable medical lead comprising one or more tines configured to extend and/or retract from a lead body. The implantable medical lead includes a torque member within the implantable medical lead and configured to rotate a drive shaft within the implantable medical lead. The drive shaft is threadably engaged with an interior surface of the implantable medical lead and configured to convert the rotation into a lateral translation of the drive shaft. The one or more tines are configured such that the lateral translation of the torque member laterally translates the one or more tines. The one or more tines are each electrically connected to a conductor extending through a lumen of the implantable medical lead and electrically isolated from each other.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kaileigh E. Rock, Mark T. Marshall, Lonnie D. Ronning, Dina L. Williams
  • Patent number: 11826074
    Abstract: In some examples, a medical device delivery system includes a device cup configured to retain the medical device at the distal end of a catheter, the cup having a cylindrical body defining at least one vent hole extending from an exterior surface of the body to an interior surface of the body, and at least one internal rib extending inwardly from the interior surface, the rib configured to contact the medical device.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ronald A Drake, Lester O. Stener, Vladimir Grubac, Martin G. Hieb
  • Patent number: 11826153
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Patent number: 11826574
    Abstract: A medical device includes a motion sensor configured to produce a motion signal and a control circuit configured to sense atrial events from the motion signal. In some examples, the control circuit is configured to set a ventricular diastolic event window and set a threshold amplitude during the ventricular diastolic event window for sensing an atrial event in response to the motion signal crossing the threshold amplitude during the ventricular diastolic window. The control circuit may determine a maximum amplitude of the motion signal during the ventricular diastolic event window for multiple ventricular cycles and determine an amplitude metric based on at least a portion of the determined maximum amplitudes. The control circuit may determine a target value of the threshold amplitude based on at least the amplitude metric and adjust the threshold amplitude toward the target value.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Paul R. Solheim, Vincent E. Splett
  • Patent number: 11826250
    Abstract: A delivery system for percutaneously deploying a valve prosthesis. The system includes a catheter assembly including a delivery sheath capsule and a handle having an oscillating device. The capsule is configured to compressively retain the valve prosthesis during implantation. After the valve prosthesis is partially exposed during implantation, the oscillating device can create a vibratory motion to reduce the friction between the valve prosthesis and the delivery sheath capsule in order to recapture the valve prosthesis.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Paul Rothstein, Thomas Secord, Byron Johnson
  • Patent number: 11819701
    Abstract: Medical devices provide metallic connector enclosures. The metallic connector enclosures may be constructed with relatively thin walls in comparison to polymer connector enclosures to aid in miniaturizing the medical device. The metallic connector enclosures may be constructed with interior surfaces that deviate less from an ideal inner surface shape in comparison to polymer connector enclosures to allow for better concentricity of electrical connectors. The metallic connector enclosures may include a panel that allows access to the cavity of the connector enclosure where set screw blocks, lead connectors, spacers, seals, and the like may be located. Furthermore, the lead connectors within the metallic connector enclosures may be separated from the metallic connector enclosure by being positioned within non-conductive seals that reside within features included in cavity walls of the connector enclosure.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 21, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Jeffrey J. Clayton, Charles E. Peters
  • Patent number: 11819699
    Abstract: VfA cardiac therapy uses an implantable medical device or system. The implantable medical device includes a tissue-piercing electrode implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body. The device may include a right atrial electrode, a right atrial motion detector, or both. The device may be implanted completely within the patient's heart or may use one or more leads to implant electrodes in the patient's heart. The device may be used to provide cardiac therapy, including single or multiple chamber pacing, atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. A separate medical device may be used to provide some functionality for cardiac therapy, such as sensing, pacing, or shock therapy.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Thomas A. Anderson, Brian P. Colin, William J. Clemens, Subham Ghosh, Jeffrey M. Gillberg, Maurice T. I Verbeek, Toine Camps, Lilian Kornet, Berthold Stegemann, Jean Rutten
  • Patent number: 11819697
    Abstract: A medical device includes a motion sensor configured to produce a motion signal and a control circuit configured to set sensing control parameters and sense atrial events from the motion signal during ventricular cycles according to the sensing control parameters. In some examples, the control circuit is configured to determine a feature of the motion signal for at least some ventricular cycles, determine a metric of the motion signal based on the determined features, and adjust at least one of the sensing control parameters based on the metric.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Keelia M. Escalante, Greggory R. Herr, Juliana E. Pronovici, Vincent E. Splett
  • Patent number: 11819698
    Abstract: A medical device is configured to sense a cardiac signal that includes far field ventricular event signals and determine a ventricular activity metric from the sensed cardiac signal. The ventricular activity metric may be representative of a ventricular rate or an atrioventricular time interval. The medical device is configured to determine an atrioventricular synchrony metric based on the ventricular activity metric and generate an output based on the atrioventricular synchrony metric. The device may include a memory configured to store data corresponding to the atrioventricular synchrony metric.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: November 21, 2023
    Assignee: Medtronic, INC.
    Inventors: Vincent P. Ganion, Yanina Grinberg, Paul R. Solheim
  • Patent number: 11819686
    Abstract: An apparatus for fastening around a cranial burr hole includes a substantially flat core and a shell encapsulating a ring portion of the core. The shell defines an orifice substantially centered within the ring portion, and has a contoured lower surface to match the cranial curvature. Pliable arms of the core extend laterally from the ring portion, each being terminated by a fastener member. A central portion of a placement tool for the apparatus has a lower part configured to extend through the apparatus orifice, and an upper part from which first and second arms of the tool extend laterally. Each tool arm is terminated with a receptacle to hold a bone screw, and, when the tool central portion lower part extends through the apparatus orifice, each receptacle aligns with a corresponding fastener member, and lower openings of the receptacles are generally oriented along the contoured lower surface.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: November 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Victor Duijsens, Carmen Dimovski, Paul S. Kratoski, Joseph P. Ricci, Paulus C. van Venrooij
  • Patent number: 11813468
    Abstract: A bore plug for an implantable medical device. The bore plug includes an elongate body having a proximal portion, a distal portion, and defining a major longitudinal axis therethrough, the distal portion being sized and configured to be received within a bore of the implantable medical device. The distal portion includes a lubricating element configured to lubricate the bore when the distal portion is at least one from the group consisting of inserted within and withdrawn from the bore.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Lonnie D. Ronning, Michael D. Eggen, Michelle S. Reinert
  • Patent number: 11813466
    Abstract: Devices and methods are described herein for treating cardiac conditions using electrical stimulation delivered to and sensing nerve activity from one or both of the AV node and nerve tissue innervating the AV node using one or more neural electrodes positioned in a location within the triangle of Koch of the right atrium.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Lilian Kornet, Richard Cornelussen, Berthold Stegemann
  • Patent number: 11817560
    Abstract: Some examples include a lithium-ion battery including an electrode assembly, a battery case, and an insulator. The electrode assembly includes a plurality of stacked electrodes. The battery case includes a cover and a housing. The housing includes a bottom, a perimeter side, and an open top. The cover is configured to extend across the open top. The cover and the housing form an interior enclosure to house the electrode assemble with the cover and the housing sealingly coupled at the lip. The insulator includes a body and a profiled portion. The body being generally planar and the profiled portion extending from the body at an angle. The body is disposed between the electrode assembly and the cover of the battery case. The profiled portion extends between the electrode assembly and the lip of the housing. The insulator is to provide a barrier between the electrode assembly and the sealed lip.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventor: Erik Hovland
  • Patent number: 11813457
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Patent number: 11813449
    Abstract: A system and method of implanting pacing lead in a patient's heart. The system may include a catheter configured to by inserted through the coronary sinus ostium such that the distal end region of the catheter is positioned past the anterolateral vein and proximate at least one septal perforating vein. The catheter is configured to inject contrast proximate the septal perforating vein to identify an implant region for a pacing lead. Further, a controller is configured to deliver pacing therapy to the implant region.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Teresa A Whitman, Kenneth C. Gardeski, Melissa G. T. Christie, Narendra K. Simha, Neranjan Persaud, Jennifer M. Bredemeier, Alexander R. Mattson, Mary M. Morris, Mikayle A. Holm
  • Patent number: 11817575
    Abstract: A lithium-ion battery includes multiple electrodes. At least one of the electrodes is comprised of multiple sheets of electrode mixture, and each of the sheets includes a different percentage of a solid-state electrolyte within the electrode mixture. The sheets are laminated together and to a current collector such that a bottom sheet nearest the current collector comprises a lowest percentage of the solid-state electrolyte. A gradient of percentages of the solid-state electrolyte is formed from the bottom sheet to a topmost sheet comprised of a highest percentage of the solid-state electrolyte.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventor: Prabhakar A. Tamirisa
  • Patent number: 11813470
    Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable devices in some examples include a multi-axis antenna having a plurality of coil windings arranged orthogonal to one another. The multi-axis antenna configured to generate at least a minimum level of induced current for recharging a power source of the implanted medical device regardless of the orientation of a direction of a magnetic field imposed on the multi-axis antenna relative to an orientation of the implanted medical device and the multi-axis antenna for a given energy level of the imposed magnetic field.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Rajesh V. Iyer, Gordon O. Munns, Christian S. Nielsen, Craig L. Schmidt, Paul B. Young
  • Patent number: 11813447
    Abstract: This disclosure describes an implantable medical electrical lead and an ICD system utilizing the lead. The lead includes a lead body defining a proximal end and a distal portion, wherein at least a part of the distal portion of the lead body defines an undulating configuration. The lead includes a defibrillation electrode that includes a plurality of defibrillation electrode segments disposed along the undulating configuration spaced apart from one another by a distance. The lead also includes at least one electrode disposed between adjacent sections of the plurality of defibrillation sections. The at least one electrode is configured to deliver a pacing pulse to the heart and/or sense cardiac electrical activity of the heart.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Gonzalo Martinez, Vladimir P. Nikolski, Nathan L. Olson, Kevin R. Seifert, Teresa A. Whitman
  • Patent number: 11813464
    Abstract: Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg