Patents Assigned to Metabolix, Inc.
  • Patent number: 6576450
    Abstract: Organisms are provided which express enzymes such as glycerol dehydratase, diol dehydratase, acyl-CoA transferase, acyl-CoA synthetase &bgr;-ketothiolase, acetoacetyl-CoA reductase, PHA synthase, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase, which are useful for the production of PHAs. In some cases one or more of these genes are native to the host organism and the remainder are provided from transgenes. These organisms produce poly (3-hydroxyalkanoate) homopolymers or co-polymers incorporating 3-hydroxypropionate or 3-hydroxyvalerate monomers wherein the 3-hydroxypropionate and 3-hydroxyvalreate units are derived from the enzyme catalysed conversion of diols. Suitable diols that can be used include 1,2-propanediol, 1,3 propanediol and glycerol. Biochemical pathways for obtaining the glycerol from normal cellular metabolites are also described.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: June 10, 2003
    Assignee: Metabolix, Inc.
    Inventors: Frank A. Skraly, Oliver P. Peoples
  • Patent number: 6548569
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: April 15, 2003
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 6495152
    Abstract: A class of biopolymer including sulfur in the form of a thioester in the polymer backbone or a thioether in the polymer side chains has been developed. These are preferably produced by fermentation of bacteria with appropriate sulfur containing substrates, which are incorporated by a broad spectrum polyhydroxyalkanoate (“PHA”) polymerase. The sulfur-containing PHAs allow various applications and uses in industry. Representative embodiments of the applications of the sulfur-containing PHAs include their uses in the packaging industry, medicine, pharmacy, agriculture or food industry, as active agents or as coatings, packaging, or carriers.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: December 17, 2002
    Assignees: Tepha, Inc., Metabolix, Inc.
    Inventors: Alexander Steinbuchel, Tina Lütke-Eversloh, Christian Ewering
  • Publication number: 20020187530
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Application
    Filed: November 9, 2001
    Publication date: December 12, 2002
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20020173558
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 21, 2002
    Applicant: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Publication number: 20020156150
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Application
    Filed: February 26, 2002
    Publication date: October 24, 2002
    Applicant: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 6429285
    Abstract: Polymer emulsion compositions presenting low levels of residue after thermolytic decomposition are provided. The compositions, based on polyhydroxyalkanoates or acrylics, are useful in a variety of applications, including the metallization of cathode ray tube phosphor screens, where use of the compositions provides enhanced luminosity and ease of manufacture. Other applications include use of the emulsion in additives used in powder molding techniques and in the manufacture of ceramic tiles.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: August 6, 2002
    Assignee: Metabolix, Inc.
    Inventors: Daniel M. Horowitz, Elaine M. Brennan
  • Publication number: 20020058316
    Abstract: A method is provided for isolating and purifying PHA from microbial or plant biomass that contains PHA. The method includes the step of extracting PHA from the biomass using at least one solvent while simultaneously subjecting the biomass to a filtration process to remove cells. In a preferred embodiment of the method, an aqueous slurry of the biomass is directly extracted by diafiltration using an organic solvent. In a preferred diafiltration process, an aqueous slurry of microbial cells comprising PHA is recirculated through a filtration membrane, wherein the membrane has a pore size sufficiently small to reject individual cells or such aggregates of cells as may exist in the slurry.
    Type: Application
    Filed: January 18, 2002
    Publication date: May 16, 2002
    Applicant: Metabolix, Inc.
    Inventor: Daniel M. Horowitz
  • Patent number: 6380244
    Abstract: Nutritional or therapeutic compositions are provided for increasing ketone body levels in the blood of mammals by providing a source of ketone bodies in the form of linear or cyclic oligomers and/or derivatives of 3-hydroxyacids. The 3-hydroxyacid can be in the form of a linear oligomer of 3-hydroxyacids other than linear homo-oligomers of 3-hydroxybutyric acid if administered in combination with acetoacetate, cyclic oligomers of 3-hydroxyacids, esters of the linear or cyclic oligomers, esters of 3-hydroxyacids other than 3-hydroxybutyric acid, and combinations thereof. An oligomer generally refers to a polymer of three or more hydroxyacids. Preferred 3-hydroxyacids include 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxyhexanoate, and 3-hydroxyheptanoate. Oligomers of odd-carbon number 3-hydroxyacids such as 3-hydroxyvalerate have advantages since they have a higher energy content than oligomers of 3-hydroxyacids having an even-number of carbons.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: April 30, 2002
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Oliver P. Peoples, Simon F. Williams, Luhua Zhong
  • Patent number: 6368836
    Abstract: Methods for the recovery and cation of polyhydroxyalkanoates (PHAs)from biomass containing PHAs, wherein the methods include treating the biomass or partially purified PHA with ozone, in at least one step of a purification process, have been developed. Treatment of PHA-containing biomass or partially purified PHA with ozone yields an enhanced level of purity suitable for coating and other applications. The ozone treatment also has the added advantage that be resulting PHA polymer or polymer latex is essentially odor-free. The ozone treatment may be used alone or in combination with other treatment, extraction, and separation stages, and is especially suitable for the treatment of PHA-containing latexes slurries, suspensions, and organic solutions.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: April 9, 2002
    Assignee: Metabolix, Inc.
    Inventors: Daniel M. Horowitz, Elaine M. Brennan
  • Patent number: 6340580
    Abstract: A method is provided for isolating and purifying PHA from microbial or plant biomass that contains PHA. The method includes the step of extracting PHA from the biomass using at least one solvent while simultaneously subjecting the biomass to a filtration process to remove cells. In a preferred embodiment of the method, an aqueous slurry of the biomass is directly extracted by diafiltration using an organic solvent. In a preferred diafiltration process, an aqueous slurry of microbial cells comprising PHA is recirculated through a filtration membrane, wherein the membrane has a pore size sufficiently small to reject individual cells or such aggregates of cells as may exist in the slurry.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: January 22, 2002
    Assignee: Metabolix, Inc.
    Inventor: Daniel Horowitz
  • Patent number: 6329183
    Abstract: Organisms are provided which express enzymes such as glycerol dehydratase, diol dehydratase, acyl-CoA transferase, acyl-CoA synthetase &bgr;-ketothiolase, acetoacetyl-CoA reductase, PHA synthase, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase, which are useful for the production of PHAs. In some cases one or more of these genes are native to the host organism and the remainder are provided from transgenes. These organisms produce poly (3-hydroxyalkanoate) homopolymers or co-polymers incorporating 3-hydroxypropionate or 3-hydroxyvalerate monomers wherein the 3-hydroxypropionate and 3-hydroxyvalreate units are derived from the enzyme catalysed conversion of diols. Suitable diols that can be used include 1,2-propanediol, 1,3 propanediol and glycerol. Biochemical pathways for obtaining the glycerol from normal cellular metabolites are also described.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: December 11, 2001
    Assignee: Metabolix, Inc.
    Inventors: Frank A. Skraly, Oliver P. Peoples
  • Patent number: 6323010
    Abstract: Several novel PHA polymer compositions produced using biological systems include monomers such as 3-hydroxybutyrate, 3-hydroxypropionate, 2-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate, 4-hydroxyvalerate and 5-hydroxyvalerate. These PHA compositions can readily be extended to incorporate additional monomers including, for example, 3-hydroxyhexanoate, 4-hydroxyhexanoate, 6-hydroxyhexanoate or other longer chain 3-hydroxyacids containing seven or more carbons. This can be accomplished by taking natural PHA producers and mutating through chemical or transposon mutagenesis to delete or inactivate genes encoding undesirable activities. Alternatively, the strains can be genetically engineered to express only those enzymes required for the production of the desired polymer composition. Methods for genetically engineering PHA producing microbes are widely known in the art (Huisman and Madison, 1998, Microbiology and Molecular Biology Reviews, 63: 21-53).
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: November 27, 2001
    Assignee: Metabolix, Inc.
    Inventors: Frank A. Skraly, Oliver P. Peoples
  • Patent number: 6323276
    Abstract: Methods and apparati have been developed for producing a suspension of predominately amorphous polymer particles, wherein the method includes thermally treating a suspension that includes crystalline or semi-crystalline polymer particles. The thermal treatment includes (a) heating a suspension of polymer particles of an appropriate size to a temperature effective to cause the polymer to become amorphous, and then (b) cooling the suspension of amorphous polymer particles below the melting point of the polymer at a rate effective to prevent substantial coalescence of the polymer particles. The method and apparati are effective for use with a variety of polymers having suitable crystallization parameters, although polyhydroxyalkanoate (PHA) polymers are preferred, particularly in an aqueous suspension medium. For PHA polymers, the polymer particles subjected to treatment preferably are of a size of less than 5 &mgr;m, or more preferably less than 1.5 &mgr;m in diameter.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: November 27, 2001
    Assignee: Metabolix, Inc.
    Inventors: Daniel Horowitz, Tillman U. Gerngross
  • Patent number: 6316262
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: November 13, 2001
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20010024631
    Abstract: Methods and apparati have been developed for producing a suspension of predominately amorphous polymer particles, wherein the method includes thermally treating a suspension that includes crystalline or semi-crystalline polymer particles. The thermal treatment includes (a) heating a suspension of polymer particles of an appropriate size to a temperature effective to cause the polymer to become amorphous, and then (b) cooling the suspension of amorphous polymer particles below the melting point of the polymer at a rate effective to prevent substantial coalescence of the polymer particles. The method and apparati are effective for use with a variety of polymers having suitable crystallization parameters, although polyhydroxyalkanoate (PHA) polymers are preferred, particularly in an aqueous suspension medium. For PHA polymers, the polymer particles subjected to treatment preferably are of a size of less than 5 &mgr;m, or more preferably less than 1.5 &mgr;m in diameter.
    Type: Application
    Filed: April 26, 2001
    Publication date: September 27, 2001
    Applicant: Metabolix, Inc.
    Inventors: Daniel Horowitz, Tillman U. Gerngross
  • Publication number: 20010023274
    Abstract: Methods and apparati have been developed for producing a suspension of predominately amorphous polymer particles, wherein the method includes thermally treating a suspension that includes crystalline or semi-crystalline polymer particles. The thermal treatment includes (a) heating a suspension of polymer particles of an appropriate size to a temperature effective to cause the polymer to become amorphous, and then (b) cooling the suspension of amorphous polymer particles below the melting point of the polymer at a rate effective to prevent substantial coalescence of the polymer particles. The method and apparati are effective for use with a variety of polymers having suitable crystallization parameters, although polyhydroxyalkanoate (PHA) polymers are preferred, particularly in an aqueous suspension medium. For PHA polymers, the polymer particles subjected to treatment preferably are of a size of less than 5 &mgr;m, or more preferably less than 1.5 &mgr;m in diameter.
    Type: Application
    Filed: April 26, 2001
    Publication date: September 20, 2001
    Applicant: Metabolix, Inc.
    Inventors: Daniel Horowitz, Tillman U. Gerngross
  • Patent number: 6245537
    Abstract: Polyhydroxyalkanoate (PHA) that contains a pyrogen such as endotoxin due to a process of producing the PHA is treated to remove the pyrogen by a process that does not affect the inherent chemical and physical properties of the PHA to obtain a biocompatible PHA. PHA produced by fermentation with a Gram negative bacteria can be treated with an oxidizing agent such as hydrogen peroxide or benzoyl peroxide to reduce the endotoxin content to less than 20 endotoxin units/gram of PHA to produce PHA that does not elicit an acute inflammatory response when implanted in an animal. The PHA may have a melting point or glass transition temperature less than 136° C., and can be chemically modified or derivatized such as by covalently coupling an attachment or targeting molecule.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: June 12, 2001
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 6228934
    Abstract: Methods and apparati have been developed for producing a suspension of predominately amorphous polymer particles, wherein the method includes thermally treating a suspension that includes crystalline or semi-crystalline polymer particles. The thermal treatment includes (a) heating a suspension of polymer particles of an appropriate size to a temperature effective to cause the polymer to become amorphous, and then (b) cooling the suspension of amorphous polymer particles below the melting point of the polymer at a rate effective to prevent substantial coalescence of the polymer particles. The method and apparati are effective for use with a variety of polymers having suitable crystallization parameters, although polyhydroxyalkanoate (PHA) polymers are preferred, particularly in an aqueous suspension medium. For PHA polymers, the polymer particles subjected to treatment preferably are of a size of less than 5 &mgr;m, or more preferably less than 1.5 &mgr;m in diameter.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 8, 2001
    Assignee: Metabolix, Inc.
    Inventors: Daniel Horowitz, Tillman U. Gerngross
  • Patent number: 6214920
    Abstract: Molding compositions including polyhydroxyalkanoates are provided. The use of polyhydroxyalkanoates as a binder in molding compositions provides improved binder removal in the finished molded product, and offers a wide range of physical properties suitable for use in a variety of processing conditions. The composition preferably includes a powdered material, such as a metal powder, ceramic powder, or blend, admixed with a polyhydroxyalkanoate binder. The compositions are useful in powder processing techniques, such as injection molding, slip casting, tape casting, or extrusion.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: April 10, 2001
    Assignee: Metabolix, Inc.
    Inventors: Edward Muller, Daniel Horowitz, Anna Egozy