Patents Assigned to MicroFab Technologies, Inc.
  • Patent number: 7152984
    Abstract: The invention is a coded cat's eye retro-reflector array fabricated using data-driven, ink jet micro-dispensing technology. Specifically the invention claims the apparatus, the method of fabricating the apparatus, and the method of using the apparatus. The function of the apparatus is the identification of objects, materials and gasses from a distance using light beams. The apparatus is based upon the cat's eye retro-reflector device that is well known to one skilled in the art.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 26, 2006
    Assignee: MicroFab Technologies Inc.
    Inventor: Donald James Hayes
  • Patent number: 6998074
    Abstract: A method for forming polymer microspheres includes dispensing polymeric material from an orifice of a drop-on-demand ink jet printhead while the orifice is immersed in a solvent extraction media.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: February 14, 2006
    Assignee: MicroFab Technologies, Inc.
    Inventor: Delia Radulescu
  • Patent number: 6805902
    Abstract: Micro-optical elements such as lenses and wave-guides are manufactured by printing a hardenable optical fluid using digitally driven ink-jet technology. An array of micro-optical elements are precisely positioned in an electroformed substrate having a surface containing structural openings which serve as molds for micro-droplets of optical fluids deposited from an ink-jet printhead. The structural openings have a stepped down edge, a shelf-like support surface below the edge and a centered aperture in the substrate. The micro-optical element formed is controlled by the shape of the edge in the surface of the substrate and the radius by the volume of micro-droplets deposited into the structural opening. The structural openings can be circular, or any desired shape which is easily and precisely formed in an electroformed substrate.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: October 19, 2004
    Assignee: Microfab Technologies, Inc.
    Inventor: Donald J. Hayes
  • Patent number: 6672129
    Abstract: A method and apparatus is disclosed which employs a pulse-controlled microdroplet fluid delivery system for precisely dispensing fragrances and other odor producing vapors. The pulse-controlled fluid delivery device is capable of ejecting microdroplets of fluid with a diameter less than 350 micrometers at a controlled ejection rate based upon inkjet printing technology. The pulse-controlled fluid delivery system includes mechanisms for vaporizing the fluids and delivery of the vapors to the nose, which is controlled by a programmable system controller capable of real time data-driven dispensing with a multi-fluid capability. Synthesis of custom fragrances is made possible by a multijet programmed control system which adjusts dispensing rates of components. Calibration of a prior art “electronic nose” is disclosed. A precise calibration gas is produced in real-time to counteract the effect of drifting.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: January 6, 2004
    Assignee: MicroFab Technologies, Inc.
    Inventors: Christopher J. Frederickson, Donald J. Hayes, David B. Wallace, David W. Taylor, Matthew D. Hayes
  • Patent number: 6625351
    Abstract: Collimating microlenses are “printed” from optical polymeric materials on the ends of optical fibers using ink-jet technology. In one embodiment the optical fibers are inserted into a collet, a stand-off distance from the open upper end of the collet. The open upper end is filled with optical fluid and a microlens is formed thereon to collimate light exiting the fiber through the microlens. In another embodiment optical fibers from a “ribbon” are separated and installed into a ferrule having multiple openings therethrough. In the same manner as in the collet embodiment, the ferrule openings serve as a mold for the lens formation with the end of the fiber being located at the focal distance of the lenslet formed in an on the ferrule. A non-wetting coating can serve to control spreading of the fluid optical material and allow lens radius control as well. The microlenses are hardened after formation.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 23, 2003
    Assignee: MicroFab Technologies, Inc.
    Inventors: W. Royall Cox, Chi Guan
  • Patent number: 6620283
    Abstract: A method for making a laminated carrier film for use in releasing interstitial fluid from skin for collection or measurement includes providing a printhead having an orifice and a reservoir containing a meltable absorber substance, the printhead being capable in response to electrical signals, to eject droplets of said meltable absorber substance from the orifice; supporting a carrier film having a series of spaced apart openings for a meltable absorber substance on a support base, in close proximity to the printhead, whereby the spaced apart openings on the carrier film can be positioned relative to the orifice to receive absorber substance droplets ejected from the printhead; filling the spaced apart openings of the carrier film with meltable absorber substance ejected from the printhead; and covering the carrier film on one side with a clear polymer film strip selected to allow laser energy to pass through the clear polymer film in order to reach the meltable absorber substance inside the openings.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: September 16, 2003
    Assignee: MicroFab Technologies, Inc.
    Inventors: Donald J. Hayes, David W. Taylor, David B. Wallace
  • Patent number: 6440212
    Abstract: A process of making thermoelectric coolers by direct printing of n- and p-type semiconductor materials suitable for making thermoelectric coolers is disclosed. Micro Jet Printing of arrays on n and p-type materials belong to conductive site pads on non-conductive substrate and crystalization of these materials in the preferred direction as they cool produces thermoelectric cooler components without the need for sawing and machining operations. A non-conductive top substrate having conductive bonding pads is secured to the tops of the columns n and p-type semiconductor materials thereby forming an electrical and physical bond to make a thermoelectric cooler package.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: August 27, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventor: Donald J. Hayes
  • Patent number: 6390453
    Abstract: A method and apparatus is disclosed which employs a pulse-controlled microdroplet fluid delivery system for precisely dispensing fragrances and other odor producing vapors. The pulse-controlled fluid delivery device is capable of ejecting microdroplets of fluid with a diameter less than 350 micrometers at a controlled ejection rate based upon ink-jet printing technology. The pulse-controlled fluid delivery system includes mechanisms for vaporizing the fluids and delivery of the vapors to the nose, which is controlled by a programmable system controller capable of real time data-driven dispensing with a multi-fluid capability. Synthesis of custom fragrances is made possible by a multijet programmed control system which adjusts dispensing rates of components. Calibration of a prior art “electronic nose” is disclosed. A precise calibration gas is produced in real-time to counteract the effect of drifting.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: May 21, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: Christopher J. Frederickson, Donald J. Hayes, David B. Wallace, David W. Taylor, Matthew D. Hayes
  • Patent number: 6378988
    Abstract: A completely self-contained replaceable cartridge for micro jet dispensing assemblies is thinner than the spacing between a standard “DIP” socket. Each cartridge body contains a preferably embedded digitally operated micro jet piezoelectric ejector, a tubular capillary reservoir and fixed connecting pins spaced to removably plug into a standard dual in line packaging (DIP) socket strip or board to receive digital ejection signals. A plurality of the individual replaceable cartridges can be closely positioned together in “banks” which plug into standard DIP sockets. One or more “banks” can be plugged into sockets on a housing containing a chamber into which the micro-droplets are deposited. An air movement device may be included with the housing to disperse volatile material that has been ejected into the chamber.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 30, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: David W. Taylor, Ioan Achiriloaie
  • Patent number: 6367925
    Abstract: A low cost digitally operated dispenser apparatus and method of operation and construction is obtained by combining flat sided, preferably rectangular tubular capillary tube having an orifice, with a flat elongated strip of piezoelectric material. Microdroplets are dispensed from an internal chamber within the capillary tube, or a separate feed supply, upon application of voltage pulses through electrodes connected to conductive layers on the piezoelectric material. The piezoelectric strip may be parallel to the flat capillary tube or perpendicular to it. On a variation, a fixture can be used to improve performance in combination with the capillary tube and piezoelectric strip. A standoff strip allows the piezoelectric operator to be thermally isolated from a flat rectangular capillary tube.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: April 9, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: Ting Chen, Donald J. Hayes
  • Patent number: 6339897
    Abstract: A method and apparatus for dispensing pheromones, semiochemicals, and other materials that can control the behavior or physiology of insects and other pests are described. The dispensers (AgJets) use electronic dispensing technology such as that used in ink jet printing. The units have a self-containing reservoir for the to-be-dispensed chemical, and they are capable of being activated to dispense by an electromagnetic signal from a broadcasting controller unit. Picoliter volumes of pheromones and semiochemicals can be dispensed in drop-on-demand mode. The units for dispensing shall be powered by battery and/or solar energy for hands-off operation in remote sites. The units may also have weather monitoring devices (thermometer, anemometer, humidity measurement), and such climactic information can be transmitted to central receiving stations and/or used locally in the AgJet device to control chemical dispensing.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: January 22, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: Donald J. Hayes, Christopher J. Frederickson, Murray Sinks
  • Patent number: 6338715
    Abstract: A more reliable and precise method of determining the olfactory threshold is provided by a digitally operated apparatus that dispenses controlled amounts of a volatile test fluid from a digital jetting device of the type used for ink jet printing. A precise number and size of micro droplets are dispensed onto a heater which vaporizes the fluid at a test location where a patient can sniff and report whether the odor is sensed. Incremental adjustments are made to determine the approximate threshold of olfactory perception of the odor. Sensors are included to verify dispensing and to coordinate dispensing with breathing.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: January 15, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: Donald J. Hayes, Ioan Achiriloaie, David W. Taylor, Norman Comparini, David B. Wallace
  • Patent number: 6334980
    Abstract: Miniaturized, self-contained apparatus for conducting bio-chemical reactions and analyses is formed in a compact structure comprising a substrate which includes a plurality of reaction chambers and a plurality of analysis chambers which are in fluid communication with the reaction chambers. Independently controllable heaters and coolers are positioned in thermal contact with the reaction chambers to permit parallel processing of biological samples at different temperature cycles. The apparatus is especially useful for performing and analyzing the results of a polymerase chain reaction.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: January 1, 2002
    Assignee: Microfab Technologies Inc.
    Inventors: Donald J. Hayes, David B. Wallace, Christopher J. Frederickson
  • Patent number: 6334851
    Abstract: A carrier film has one or more openings or wells loaded with a meltable absorbing substance for absorbing laser energy. The carrier film has a clear film which covers one side of the opening containing the absorber substance and the open side of the opening in the carrier film is positioned adjacent to the skin and irradiated through the clear cover film by a laser beam. The melted laser energy absorbing substance is ejected to form a spot laying on the skin. After moving the carrier film, a laser beam impinges the spot thereby raising a tiny blister on the skin containing interstitial fluid. The interstitial fluid is collected for diagnosis and analysis. A method of making and loading the carrier film with a digitally operated dispenser of the type used for ink jet printing is disclosed. Special construction of the opening appears to enhance ejection.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: January 1, 2002
    Assignee: MicroFab Technologies, Inc.
    Inventors: Donald J. Hayes, David W. Taylor, David B. Wallace
  • Patent number: 6325475
    Abstract: An ink-jet dispenser for the micro-dispensation of airborne materials into an individual's airspace for inhalation or sniffing. The ink-jet dispenser will allow the study of temporal integration times, inter-nostril summation, backwards and forwards masking, and other olfactory phenomena.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: December 4, 2001
    Assignee: Microfab Technologies Inc.
    Inventors: Donald J. Hayes, Christopher J. Frederickson, David B. Wallace
  • Patent number: 6267724
    Abstract: A method of using an implantable diagnostic sensor capable of detecting a biologically relevant state or change in state of a human or animal subject. The method includes selecting a dynamic probe to produce a measurable change over a range of changes in responses to a varying biologically relevant state. The method also includes selecting a reference material capable of exhibiting a measurable state within the range of changes of the dynamic probe material that represents a desired response level of the dynamic probe material with respect to the biologically relevant state. Further, the method requires tattooing the probe material into the human or animal skin for comparing the state of the dynamic probe to the reference material.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: July 31, 2001
    Assignee: MicroFab Technologies, Inc.
    Inventor: David W. Taylor
  • Patent number: 6188416
    Abstract: An ink jet printhead assembly for ink jet printing apparatus and a method for the manufacture thereof. The piezoelectrically operable ink jet printhead assembly has two arrays of driving channels aligned with a single orifice array in which each orifice connects through a fluid channel to a single driving channel.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: February 13, 2001
    Assignee: MicroFab Technologies, Inc.
    Inventor: Donald J. Hayes
  • Patent number: 6114187
    Abstract: Solder jetting technology is employed to prepare a chip scale package which is "bumped" in preparation for making electrical interconnections with pads on a connection surface of the chip. The chip scale packages can be produced in wafer form before severing the wafer to produce individually packaged chips. In one embodiment a column is built on each pad of the chip connection surface and then the pads and columns are covered with a layer of dielectric jetted on to the connection surface to provide the package. The upper surface portion of the dielectric layer is removed to expose the ends of the columns. The ends of the columns are then bumped using solder jet technology to ready the package for subsequent electrical interconnections. An alternate embodiment employs taller columns which extend above the layer of dielectric. A solder reflow operation is applied to convert the exposed upper ends of the columns into generally spherical balls.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: September 5, 2000
    Assignee: MicroFab Technologies, Inc.
    Inventor: Donald J. Hayes
  • Patent number: 6077380
    Abstract: Solid spheres of substantially uniform size and shape and coated with a lower temperature melting material are formed for use in interconnect arrays, solder pastes, Z-axis conduction adhesives, etc. Drops of two materials are merged in flight forming a coating of the lower melting temperature material on the drop of higher melting temperature material.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: June 20, 2000
    Assignee: MicroFab Technologies, Inc.
    Inventors: Donald J. Hayes, Mary W. Hartnett
  • Patent number: 6029896
    Abstract: The present invention uses a novel waveform to allow the droplet volume dispensed from a demand mode inkjet type device to be increased and selected according to easily controllable parameters. The current invention departs from the conventional drive method by significantly increasing the time for energy input in the initial instance as well is in all later application of the drive voltage to the device. In shape, the waveform is the same whether a unipolar or bipolar pulse is utilized; however, the transition times in the initial instance are up to three times the acoustic resonance and the delay times are of the same order. Droplet diameter can be varied from 1X the orifice diameter to 2X the orifice diameter resulting in an 8:1 range of droplet volume. Since the volume modulation results from changes in the waveform used to drive the solder jet device, the drop volume can be changed and altered in real time.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: February 29, 2000
    Assignee: MicroFab Technologies, Inc.
    Inventors: Roger G. Self, David B. Wallace