Patents Assigned to Microfabrica Inc.
  • Patent number: 7511523
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: March 31, 2009
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Patent number: 7504840
    Abstract: Multilayer test probe structures are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. In some embodiments each probe structure may include a plurality of contact arms or contact tips that are used for contacting a specific pad or plurality of pads wherein the arms and/or tips are configured in such away so as to provide a scrubbing motion (e.g. a motion perpendicular to a primary relative movement motion between a probe carrier and the IC) as the probe element or array is made to contact an IC, or the like, and particularly when the motion between the probe or probes and the IC occurs primarily in a direction that is perpendicular to a plane of a surface of the IC. In some embodiments arrays of multiple probes are provided and even formed in desired relative position simultaneously.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 17, 2009
    Assignee: Microfabrica Inc.
    Inventors: Vacit Arat, Adam L. Cohen, Dennis R. Smalley, Ezekiel J. J. Kruglick, Richard T. Chen, Kieun Kim
  • Patent number: 7501328
    Abstract: Embodiments of the present invention provide mesoscale or microscale three-dimensional structures (e.g. components, device, and the like). Embodiments relate to one or more of (1) the formation of such structures which incorporate sheets of dielectric material and/or wherein seed layer material used to allow electrodeposition over dielectric material is removed via planarization operations; (2) the formation of such structures wherein masks used for at least some selective patterning operations are obtained through transfer plating of masking material to a surface of a substrate or previously formed layer, and/or (3) the formation of such structures wherein masks used for forming at least portions of some layers are patterned on the build surface directly from data representing the mask configuration, e.g. in some embodiments mask patterning is achieved by selectively dispensing material via a computer controlled inkjet nozzle or array or via a computer controlled extrusion device.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: March 10, 2009
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Dennis R. Smalley, Willa M. Larsen, Richard T. Chen
  • Patent number: 7498714
    Abstract: Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: March 3, 2009
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Adam L. Cohen, Vacit Arat, Dennis R. Smalley
  • Patent number: 7488686
    Abstract: A method of fabricating three-dimensional structures from a plurality of adhered layers of at least a first and a second material wherein the first material is a conductive material and wherein each of a plurality of layers includes treating a surface of a first material prior to deposition of the second material. The treatment of the surface of the first material either (1) decreases the susceptibility of deposition of the second material onto the surface of the first material or (2) eases or quickens the removal of any second material deposited on the treated surface of the first material. In some embodiments the treatment of the first surface includes forming a dielectric coating over the surface and the second material is electrodeposited (e.g. using an electroplating or electrophoretic process). In other embodiments the first material is coated with a conductive material that doesn't readily accept deposits of electroplated or electroless deposited materials.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: February 10, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley, Michael S. Lockard, Qui T. Le
  • Patent number: 7412767
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: August 19, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard
  • Patent number: 7384530
    Abstract: The invention includes methods of fabrication and apparatuses. In at least some embodiments of the applicants' invention, the methods include processes of: maskless selective deposition of non-layered structures, selective etching and/or deposition without use of a separate mask and/or lithography techniques, retaining selected portions of sacrificial material during removal (e.g. etching) of other portions of sacrificial material, depositing materials other than the structural and sacrificial materials, including more than one type of structural and/or sacrificial material, and fabrication of interlacing elements. Embodiments of the methods of the invention provide increased capabilities, properties, flexibility and in the fabrication of three-dimensional structures by electro-deposition or other techniques.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: June 10, 2008
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7372616
    Abstract: Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFABâ„¢).
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: May 13, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, John D. Evans
  • Patent number: 7368044
    Abstract: Electrochemical Fabrication techniques are used to modify substrates or to form multilayer structures (e.g. components or devices) from a plurality of overlaying and adhered layers. Masks are used to selectively etch or deposit material. Some masks may be of the contact type and may be formed of multiple materials some of which may be support materials, some of which may be mating materials for contacting a substrate and some may be intermediate materials. In some embodiments the contact masks may have conformable contact surfaces (i.e. surfaces with sufficient flexibility or deformability that they can substantially conform to surface of the substrate to form a seal with it) or they may have semi-rigid or even rigid surfaces. In embodiments where masks are used for selective deposition operations, etching operations may be performed after deposition to remove flash deposits (thin undesired deposits from areas that were intended to be masked).
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: May 6, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7363705
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: April 29, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard
  • Patent number: 7351321
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: April 1, 2008
    Assignee: Microfabrica, Inc.
    Inventor: Adam L. Cohen
  • Patent number: 7303663
    Abstract: Multilayer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching Operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching Operations may be separated by intermediate post processing activities, they may be separated by cleaning Operations, or barrier material removal Operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: December 4, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dale S. McPherson
  • Patent number: 7291254
    Abstract: Treatment of substrates, formation of structures, and formation of multilayer structures using contact masks are disclosed where a non-parallel or non-simultaneous mating of various mask contact surfaces to a substrate surface occurs. Some embodiments involve bringing a relative planar mask contact surface and a relative planar substrate surface together at a small angle (but larger than an alignment tolerance associated with the system). Some embodiments involve flexing a mask to make it non-planar and bringing it into contact with a substrate such that progressively more contact between the mask and substrate occur until complete mating is achieved. Some embodiments involve use of gas or liquid pressure to bow a flexible or semi-flexible mask and use a linear actuator to bring the mating surfaces together and to bring the mask into a more planar configuration.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: November 6, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7288178
    Abstract: Various embodiments of the invention provide techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the electrochemical extrusion process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of a multi-layer electrochemical fabrication process.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 30, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Gang Zhang, Qui T. Le, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 7273812
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: September 25, 2007
    Assignee: Microfabrica Inc.
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard, Christopher A. Bang
  • Patent number: 7271888
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 18, 2007
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 7265562
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 4, 2007
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Patent number: 7265565
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 4, 2007
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Patent number: 7252861
    Abstract: Multi-layer structures are electrochemically fabricated by depositing a first material, selectively etching the first material (e.g. via a mask), depositing a second material to fill in the voids created by the etching, and then planarizing the depositions so as to bound the layer being created and thereafter adding additional layers to previously formed layers. The first and second depositions may be of the blanket or selective type. The repetition of the formation process for forming successive layers may be repeated with or without variations (e.g. variations in: patterns; numbers or existence of or parameters associated with depositions, etchings, and or planarization operations; the order of operations, or the materials deposited). Other embodiments form multi-layer structures using operations that interlace material deposited in association with some layers with material deposited in association with other layers.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: August 7, 2007
    Assignee: Microfabrica Inc.
    Inventor: Dennis R. Smalley
  • Patent number: 7250101
    Abstract: Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are form from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurs during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: July 31, 2007
    Assignee: Microfabrica Inc.
    Inventors: Jeffrey A. Thompson, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley