Abstract: A broad-band technique for reducing the distributed inductance of a four-conductor Kelvin cable is disclosed. A special inductance-canceling cable section is connected in tandem with the cable section contacting the cell/battery. Connections between the two cable sections are transposed such that conductors in each conductor pair of the canceling section connect to current-carrying and voltage-sensing conductors from different conductor pairs in the contacting section. The canceling section thereby exhibits a distributed negative mutual inductance between its current-carrying and voltage-sensing conductors that can effectively cancel the distributed positive mutual inductance introduced by the contacting section. In one embodiment, conductor pairs comprise pairs of insulated wires which may be twisted together. In other disclosed embodiments, conductor pairs comprise shielded coaxial cables.
Abstract: A method and apparatus is provided for determining how a vehicle battery would perform when used to start a vehicle. A discharge voltage/current of the battery is predicted as a function of a battery dynamic parameter, an open circuit voltage of the battery, a battery temperature and a fixed current/voltage value at which the battery is to be discharged. This discharge voltage/current value is compared to a minimum starting voltage/current required to start the vehicle in which the battery is employed and an output indicative of a starting capability of the battery is provided.
Abstract: A battery tester that is capable of calculating its own reference values is provided. The battery tester includes test circuitry that is configured to obtain dynamic parameter values for batteries, and to compute at least one reference value based on the dynamic parameter values.
Abstract: A method and apparatus for testing a storage battery is provided in which a battery is measured to obtain a battery dynamic parameter value such as conductance. The battery is measured to obtain an open circuit voltage, a resistance and a recovery voltage differential. A condition of the battery is determined as a function of the measured battery dynamic parameter, the open circuit voltage and the recovery voltage differential.
Abstract: A storage battery includes a battery housing and a plurality of electrochemical cells in the battery housing electrically connected in series to a positive terminal of the battery and a negative terminal of the battery. A first connection is coupled to the positive terminal of the battery and a second connection is coupled to the negative terminal of the battery. A battery test module is mounted to the battery housing and electrically coupled to the positive and negative terminals through the respective first and second Kelvin connection. A display or other output is configured to output battery condition information from the battery test module.
Type:
Grant
Filed:
August 13, 2002
Date of Patent:
June 6, 2006
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Michael Cox, Jamey L. Butteris, Michael J. Fritsch
Abstract: A storage battery includes a battery housing and a plurality of electrochemical cells in the battery housing electrically connected to terminals of the battery. A battery test module is mounted to the battery housing and electrically coupled to the terminals through Kelvin connections. A display or other output is configured to output battery condition information from the battery test module. Battery post extensions couple the battery test module to terminals of the battery.
Type:
Grant
Filed:
December 5, 2002
Date of Patent:
May 2, 2006
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Jamey L. Butteris, Michael J. Fritsch
Abstract: An electronic battery tester for testing a storage battery provides a test output indicative of a condition of the battery. Electronic measurement circuitry provides a measurement output related to a condition of the battery. The battery condition is determined based upon one or more responses to one or more queries provided to an operator. The responses are used to determine battery type.
Type:
Grant
Filed:
May 17, 2005
Date of Patent:
April 25, 2006
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Stephen J. McShane, Wilhelmus H. J. Koster
Abstract: A jump-start booster pack for starting a vehicle having a depleted vehicle battery is provided. The jump-start booster pack includes a positive connector that can couple to a positive terminal of the vehicle battery and a negative connector that can couple to a negative terminal of the vehicle battery. The apparatus also includes a storage capacitor that provides starting energy to the vehicle when electrical connection is made between the storage capacitor and the vehicle battery through the positive and negative connectors.
Abstract: An electronic battery tester, comprising first and second connectors configured to electrically couple to terminals of the battery, a microprocessor configured to test the battery using the first and second connectors, a memory containing a set of locked instructions for the microprocessor, an input configured to receive a software unlocking key, and the microprocessor configured to execute the set of locked instructions in response to the software unlocking key corresponding a predetermined software unlocking key.
Type:
Grant
Filed:
September 18, 2002
Date of Patent:
March 14, 2006
Assignee:
Midtronics, Inc.
Inventors:
Clark E. Smith, Kevin I. Bertness, Stephen J. McShane
Abstract: An apparatus and method for testing/charging a storage battery includes a radio frequency identification (RFID) tag that can be affixed to the storage battery, the RFID tag is configured to store and transmit information related to the battery. The apparatus also includes a battery tester/charger. The tester/charger includes a radio frequency (RF) receiver configured to receive the transmitted information related to the battery, and testing/charging circuitry configured to utilize the received information related to the battery to test/charge the storage battery.
Abstract: An electronic battery tester for testing a storage battery includes test circuitry configured to provide a battery test output related to a condition of the battery. A memory stores a battery tester address of the battery tester, and communication circuitry transmits the battery test output formatted with the battery tester address on a communication link to a remote location.
Abstract: An electronic battery tester for testing a storage battery determines a condition of the battery. The condition is a relative condition and is a function of a dynamic parameter of the battery and an empirical input variable.
Abstract: An electronic battery tester is provided for testing storage batteries. Battery test circuitry is configured to couple to the storage battery and measure a condition of the battery. A removable module is configured to couple to the battery tester to add increased functionality.
Abstract: An electronic battery tester and method includes generating battery test data from an electronic battery test. The battery test data is transmitted over a wireless communication medium. In another aspect, a method and apparatus is provided for receiving battery test data from a wireless communication medium. Also, a diagnostic battery charger, which is capable of transmitting battery condition information to an external receiver, is provided.
Abstract: An electronic battery tester for testing a storage battery. The tester includes a first connector configured to electrically couple to a first terminal of the battery via a first battery post adapter and a second connector configured to electrically couple to a second terminal of the battery via a second battery post adapter. The tester also includes an input configured to receive a battery-post-adapter-connection indicator. Test circuitry, which is coupled to the input, upon receipt of the battery-post-adapter-connection indicator, determines whether or not the first battery post adapter and the second battery post adapter are faulty.
Abstract: An electronic battery tester includes battery test circuitry configured to couple to a battery. A databus is configured to exchange data with external circuitry.
Abstract: A storage battery includes a battery housing and a plurality of electrochemical cells in the battery housing electrically connected to terminals of the battery. A battery test module is mounted to the battery housing and electrically coupled to the terminals through Kelvin connections. A display or other output is configured to output battery condition information from the battery test module. The battery test module is configured to automatically carry out a battery test when a voltage across the battery falls below a predetermined threshold.
Abstract: An electronic battery tester or charger for use with a storage battery includes a first and a second electrical connector configured to electrically couple to terminals of the storage battery. Circuitry operates on the storage battery. OBD communication circuitry is configured to couple to an OBD databus of a vehicle. The operation of the circuitry is a function of communication on the OBD databus.
Abstract: A battery charger with an automatic customer notification system is provided. The battery charger includes battery charging circuitry which is configured to couple to a battery, and to provide a charging signal to the battery. The battery charger also includes communication circuitry, coupled to the charging circuitry, that is configured to transmit a signal to an external device upon receipt of a charge status code form the battery charging circuitry.
Abstract: An electronic battery tester for testing a storage battery provides a test output indicative of a condition of the battery. Electronic measurement circuitry provides a measurement output related to a condition of the battery. The battery condition is determined based upon one or more responses to one or more queries provided to an operator. The responses are used to determine battery type.
Type:
Grant
Filed:
September 30, 2003
Date of Patent:
September 6, 2005
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Stephen J. McShane, Wilhelmus H. J. Koster