Abstract: A method and apparatus for coupling a battery charger and/or a battery tester to a battery is provided. A clamp can be selectively removed from a cable. This allows replacement of the clamp as desired as well as fixedly or removably coupling the cable to the battery tester or charger.
Type:
Application
Filed:
February 20, 2004
Publication date:
August 25, 2005
Applicant:
Midtronics, Inc.
Inventors:
Harvey Restaino, Timothy Demel, Christian Pimentel
Abstract: A cable for use with an electronic battery tester includes first and second electrical connections configured to couple to terminals of a battery. A memory is configured to store digital data. Electrical terminals are configured to couple the cable to the electronic battery tester.
Type:
Grant
Filed:
June 23, 2003
Date of Patent:
August 23, 2005
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Krzysztof Jeziorczak
Abstract: A method and apparatus for testing a storage battery is provided that generates a temperature at which the battery will fail to meet performance criteria. The use of a temperature-based system to rate battery performance provides a clearer understanding to those not skilled in the art of battery testing. The critical failure temperature is obtained using the battery parameters of open circuit voltage, temperature and a dynamic parameter such as conductance or resistance.
Type:
Grant
Filed:
March 14, 2003
Date of Patent:
August 16, 2005
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, J. David Vonderhaar, Dennis V. Brown, James K. Klang, Albert G. Kimbrough
Abstract: An apparatus and method for supplying energy to a vehicle battery is provided. The apparatus includes a positive connector that couples to a positive terminal of the vehicle battery and a negative connector that couples to a negative terminal of the vehicle battery. A battery charger applies a charge signal to the vehicle battery through the positive and negative connectors to thereby charge the vehicle battery. A jump-start booster pack, coupled to the battery charger, can optionally provide starting energy to the vehicle battery through the positive and negative connectors. The booster pack can be charged by the charge signal. In one aspect, the battery charger is a switch-mode charger.
Abstract: An electronic battery tester and method includes generating battery test data from an electronic battery test. The battery test data is transmitted over a wireless communication medium. In another aspect, a method and apparatus is provided for receiving battery test data from a wireless communication medium.
Abstract: An electronic battery tester for testing a storage battery that includes a battery housing with a plurality of electrochemical cells electrically connected to terminals of the battery is provided. The battery tester includes positive and negative connectors that can connect to the battery terminals. The tester also includes a temperature sensor that can measure a temperature of an individual electrochemical cell of the plurality of electrochemical cells. Processing circuitry, which is coupled to the temperature sensor, is configured to test the battery using the positive and negative connectors and to provide an output related to the temperature measured by the temperature sensor. The present invention also provides a battery charger with an integrated battery cell temperature sensor.
Abstract: A battery tester cable for coupling an electronic battery tester to a battery includes first clamp and second clamps to provide a connections to terminals of the battery. Cables extend from the clamps. A moveable cable holding device can be positioned along a length of the cables to secure the cables together.
Abstract: An alternator tester includes an alternator output measurement circuit configured to measure an electrical output of an alternator. A microprocessor determines a alternator condition as a function of the electrical output. The microprocessor encrypts information and provides an encrypted output which is related to the alternator electrical output. A method includes outputting such encrypted data.
Abstract: A battery monitor is provided for use with a battery of an automotive vehicle. The battery monitor can provide real time battery condition measurements and can selectively control the charging of the battery through an alternator of the vehicle based upon the measured battery condition.
Abstract: A “three-point” measurement technique effectively removes system effects to determine impedance, admittance, resistance, or conductance of an individual cell, battery, or interconnecting conductor embedded in a series or series-parallel electrochemical battery or fuel cell system. Three electrical contact points are defined. Two of these points bound the subject element. The third point is separated from the other two by a conducting path that may include one or more cells or batteries. By measuring dynamic parameters between alternate pairs of contact points, three dynamic parameter measurements are acquired. A mathematical computation combines the measurements and determines the dynamic parameter of a subject element as if it were alone—thus effectively “de-embedding” the subject element from the remainder of the system. A “four-point” extension of this technique permits measuring a dynamic parameter of a cell/battery disposed in a multiple-unit string of parallel-connected cells/batteries.
Abstract: An electronic battery tester for testing a storage battery. The battery tester provides a replacement battery output as a function of battery environment information and battery replacement information.
Abstract: An electronic battery tester connectable to a battery through any one of multiple cables. The tester includes an input that can couple to any one of the multiple cables. Also included is a memory that contains multiple calibration values, each calibration value corresponds to a different one of the multiple cables. Test circuitry, which is coupled to the input and to the memory, detects which one of the multiple cables is coupled to the input, and tests the battery as a function of one of the multiple calibration values that corresponds to the detected one of the multiple cables.
Type:
Grant
Filed:
March 25, 2003
Date of Patent:
May 10, 2005
Assignee:
Midtronics, Inc.
Inventors:
Kevin I. Bertness, Clark E. Smith, Roger S. Knopf
Abstract: A battery discharge indicator for protecting a storage battery is provided. The battery discharge indicator includes a positive connector that can couple to a positive terminal of the battery and a negative connector that can couple to a negative terminal of the battery. Also included, is a voltage sensor that couples to the battery via the positive connector and the negative connector and senses a battery terminal voltage. A microprocessor, coupled to the voltage sensor, provides a first alarm signal if a magnitude of the battery terminal voltage is below a first threshold for a first interval of time and if the magnitude of the battery terminal voltage is below a second threshold for a second interval of time.
Abstract: A method and apparatus for auditing condition of a storage battery performs a battery test on the storage battery to obtain a test result. Subjective information pertaining to the battery is obtained. An audit code is generated based on the battery test result and the subjective information.
Abstract: An electronic battery tester for testing a storage battery includes first and second Kelvin connections configured to couple to the battery. A forcing function applies a time varying signal to the battery through the first and second Kelvin connections. Further, a probe light is configured to couple to at least one of the first and second Kelvin connections. A microprocessor tests the storage battery as a function of a dynamic parameter measured through the first and second Kelvin connections in response to the applied time varying signal.
Abstract: An electronic battery tester for testing a storage battery that includes a battery housing with a plurality of electrochemical cells electrically connected to terminals of the battery is provided. The battery tester includes positive and negative connectors that can connect to the battery terminals. The tester also includes a temperature sensor that can measure a temperature of an individual electrochemical cell of the plurality of electrochemical cells. Processing circuitry, which is coupled to the temperature sensor, is configured to test the battery using the positive and negative connectors and to provide an output related to the temperature measured by the temperature sensor. The present invention also provides a battery charger with an integrated battery cell temperature sensor.
Abstract: An apparatus and a method of monitoring a battery in an automotive vehicle are provided. An output is provided which can be a relative output as a function of minimum and maximum parameters of the battery.
Abstract: An electronic battery tester for testing a storage battery includes test circuitry configured to provide a battery test output related to a condition of the battery. A memory stores a battery tester address of the battery tester, and communication circuitry transmits the battery test output formatted with the battery tester address on a communication link to a remote location.
Abstract: A method of coupling a shunt to a printed circuit board (PCB) of an energy management system is provided. The method includes coupling flexible electrical connectors to the shunt and soldering the flexible electrical connectors to connection points on the PCB of the energy management system. An energy management system that includes a shunt coupled to a printed circuit board using the above method is also provided.
Abstract: A cable for connecting to an electronic battery tester, includes a first end configured to couple to a databus of a vehicle and a second end configured to couple to the electronic battery tester. An electrical connection extends between the first end and the second end and is configured to couple the electronic battery tester to the databus of the vehicle.