Abstract: A self-balanced adjustable mounting system for a flat panel display. When a flat panel display is attached to the mounting system, the display is adapted to revolve about a substantially horizontal axis extending proximate a center of gravity of the display. The system may be self-balancing at a plurality of locations about the axis.
Abstract: A mount for attaching a projection device to an overhead structure includes a device interface operably attachable to the projection device and a device orientation adjustment structure operably coupled with the device interface. The device orientation adjustment structure has structure defining up to three independent axes for adjustment of projector pitch, roll, and yaw. A single selectively adjustable friction element may be provided to enable projector position to be fixed about for any one or all of the independent axes. A gear adjustment mechanism may be provided to enable fine adjustment of projector position. Moreover, any one or all of the independent axes may pass through the projector device, preferably proximate its center of gravity so that it is self balanced on the mount to ease adjustment.
Abstract: A display mount with post-installation adjustment features according to embodiments of the present disclosure addresses the above-mentioned needs of the industry. The mount may include two or more wall brackets, each having a vertically shiftable carrier assembly. Cross-supports extend between the carrier assemblies and are received in floating connection structures in the carriers. An electronic display display is coupled with the cross-supports. The carrier assembly of each wall bracket is independently vertically shiftable to shift the orientation of the cross-supports, and thereby adjust the vertical position and orientation of the electronic display device coupled with the cross-supports. The electronic display may be coupled to the cross-supports with display interface brackets which are tilt-adjustable to change the tilt position of the display device.
Abstract: A mount for attaching a projection device to an overhead structure includes a device interface operably attachable to the projection device and a device orientation adjustment structure operably coupled with the device interface. The device orientation adjustment structure has structure defining up to three independent axes for adjustment of projector pitch, roll, and yaw. A single selectively adjustable friction element may be provided to enable projector position to be fixed about for any one or all of the independent axes. A gear adjustment mechanism may be provided to enable fine adjustment of projector position. Moreover, any one or all of the independent axes may pass through the projector device, preferably proximate its center of gravity so that it is self balanced on the mount to ease adjustment.
Abstract: An in-wall mount for supporting an electronic display from a wall. The in-wall mount includes a wall interface structure, a display interface structure, and an extensible arm assembly. The display interface structure is selectively outwardly shiftable relative to the wall interface structure between a first position wherein the display interface structure is proximate the wall interface structure and a second position wherein the display interface structure is spaced apart from the wall interface structure, the display interface structure rising vertically relative to the wall interface structure as the display interface structure is shifted from the first position to the second position.
Abstract: An automated tilt head assembly for tilting of an electronic display screen from a vertical plane and for rotation of the tilt head assembly about a vertical axis of rotation. The automated tilt head assembly generally includes a mobile carrier surface to which an electronic display device is mounted, a guide system for defining a range of tilt motion about a tilt axis, and a power-driven unit having a motor and gear assembly for automatically and selectively controlling the tilt motion. The motor drives a worm member, which by means of a gear, mates with a toothed sector of the mobile carrier surface, to thereby control the tilt motion of the mobile carrier surface. The tilt head assembly further includes a second power-driven unit having a motor and gear assembly to control rotation of the head assembly about a vertical axis.
Abstract: A multi position mount for an electronic display providing an adjustable display interface including a mounting assembly providing adjustable movement in at least one direction as determined by a plurality of follower members disposed within slots for slideable movement, and includes a mounting bracket having flanges configured the receive the adjustable display interface in at least two distinct locations. A plurality of mounting positions are possible for quick and easy engagement and disengagement, where at least one position provides mounting of a flat panel device in very close proximity to a mounting surface, and at least one position provides for angled adjustment of a flat panel display.
Abstract: A mounting system for an electronic display providing enhanced versatility of movement and ease of installation. The mounting system includes a latch and kickstand assembly for latching the display to a support structure mountable to a wall and propping the bottom edge of the display away from the wall to enable connection of wires to the back of the display while the display is mounted on the wall. The mount further includes a vertical position adjustment assembly to enable vertical positioning and leveling of the display after the display is mounted.
Type:
Application
Filed:
September 8, 2008
Publication date:
December 9, 2010
Applicant:
MILESTONE AV TECHNOLOGIES LLC
Inventors:
Dominic Grey, Joel Pfister, Peter Tribuno
Abstract: A self-balanced adjustable mounting system for a flat panel display. A display interface having a hollow, semi-spherical shell portion is attached to the flat panel display. The semi-spherical shell is formed with a generally constant radius of curvature. The center of the radius of curvature is disposed proximate the center of gravity of the flat panel display with the display interface attached. The display interface is received in a guide structure that has a bearing portion engaging the outer surface of the semi-spherical shell, and a second bearing portion engaging the inner surface of the semi-spherical shell through an aperture formed in the semi-spherical shell. The semi-spherical shell is guided between the first and second bearing portions so that the flat panel display and device interface are generally rotatable about the center of the radius of curvature of the semi-spherical shell.
Abstract: A display mount with post-installation adjustment features according to embodiments of the present disclosure addresses the above-mentioned needs of the industry. The mount may include two or more wall brackets, each having a vertically shiftable carrier assembly. Cross-supports extend between the carrier assemblies and are received in floating connection structures in the carriers. An electronic display display is coupled with the cross-supports. The carrier assembly of each wall bracket is independently vertically shiftable to shift the orientation of the cross-supports, and thereby adjust the vertical position and orientation of the electronic display device coupled with the cross-supports. The electronic display may be coupled to the cross-supports with display interface brackets which are tilt-adjustable to change the tilt position of the display device.