Patents Assigned to Miradia Inc.
  • Patent number: 10040681
    Abstract: A micro electro-mechanical (MEMS) device assembly is provided. The MEMS device assembly includes a first substrate that has a plurality of electronic devices, a plurality of first bonding regions, and a plurality of second bonding regions. The MEMS device assembly also includes a second substrate that is bonded to the first substrate at the plurality of first bonding regions. A third substrate having a recessed region and a plurality of standoff structures is disposed over the second substrate and bonded to the first substrate at the plurality of second bonding regions. The plurality of first bonding regions provide a conductive path between the first substrate and the second substrate and the plurality of the second bonding regions provide a conductive path between the first substrate and the third substrate.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: August 7, 2018
    Assignee: Miradia Inc.
    Inventors: Hua-Shu Wu, Yu-Hao Chien, Shih-Yung Chung, Li-Tien Tseng, Yu-Te Yeh
  • Patent number: 9006878
    Abstract: A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: April 14, 2015
    Assignee: Miradia Inc.
    Inventors: Xiao “Charles” Yang, Dongmin Chen, Philip Chen
  • Patent number: 8908255
    Abstract: A method for forming an optical deflection device includes providing a semiconductor substrate comprising an upper surface region and a plurality of drive devices within one or more portions of the semiconductor substrate. The upper surface region includes one or more patterned structure regions and at least one open region to expose a portion of the upper surface region to form a resulting surface region. The method also includes forming a planarizing material overlying the resulting surface region to fill the at least one open region and cause formation of an upper planarized layer using the fill material. The method further includes forming a thickness of silicon material at a temperature of less than 300° C. to maintain a state of the planarizing material.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 9, 2014
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Yuxiang Wang, Wook Ji, Justin Allen Payne, Ye Wang, Howard Woo
  • Publication number: 20140227817
    Abstract: A manufacturing process of a M EMS device divides a substrate for fabricating u MEMS component into two electrically isolated regions, so that the MEMS component and the circuit disposed on its surface could connect electrically with another substrate below respectively through the corresponding conducing regions, whereby the configuration of the electrical conducting paths and the manufacturing process are simplified. A MEMS device manufactured by using the aforementioned process is also disclosed herein.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: MIRADIA, INC.
    Inventors: YU-HAO CHIEN, HUA-SHU WU, SHIH-YUNG CHUNG, LI-TIEN TSENG, YU-TE YEH
  • Patent number: 8754529
    Abstract: A MEMS device comprises a substrate for manufacturing a moving MEMS component is divided into two electrically isolated conducting regions to allow the moving MEMS component and a circuit disposed on its surface to connect electrically with another substrate below respectively through their corresponding conducting regions, thereby the electrical conducting paths and manufacturing process can be simplified.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: June 17, 2014
    Assignee: Miradia, Inc.
    Inventors: Yu-Hao Chien, Hua-Shu Wu, Shih-Yung Chung, Li-Tien Tseng, Yu-Te Yeh
  • Patent number: 8530258
    Abstract: A resonator includes a CMOS substrate having a first electrode and a second electrode. The CMOS substrate is configured to provide one or more control signals to the first electrode. The resonator also includes a resonator structure including a silicon material layer. The resonator structure is coupled to the CMOS substrate and configured to resonate in response to the one or more control signals.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 10, 2013
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen, Ye Wang, Justin Payne, Yuxiang Wang, Wook Ji
  • Patent number: 8530259
    Abstract: A method for fabricating a micro electromechanical device includes providing a first substrate including control circuitry. The first substrate has a top surface and a bottom surface. The method also includes forming an insulating layer on the top surface of the first substrate, removing a first portion of the insulating layer so as to form a plurality of standoff structures, and bonding a second substrate to the first substrate. The method further includes thinning the second substrate to a predetermined thickness and forming a plurality of trenches in the second substrate. Each of the plurality of trenches extends to the top surface of the first substrate. Moreover, the method includes filling at least a portion of each of the plurality of trenches with a conductive material, forming the micro electromechanical device in the second substrate, and bonding a third substrate to the second substrate.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 10, 2013
    Assignee: Miradia Inc.
    Inventors: Dongmin Chen, Justin Payne, Li-Tien Tseng
  • Patent number: 8424343
    Abstract: Light-absorbing glass frit material is used to seal an opening in a device or a plurality of devices in a batch process. The glass frit material is applied and then irradiated with light having a wavelength absorbed by the glass frit material so that the glass frit ball undergoes a glassy transition and forms a seal. When sealing an opening in a device, the glass frit material may be applied as a spherical ball such that the spherical ball covers the opening. The volume of the spherical ball may be selected to determine the final shape of the seal.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 23, 2013
    Assignee: MIRADIA, Inc.
    Inventors: Dongmin Chen, Matthew William Bellis
  • Patent number: 8361331
    Abstract: A MEMS mirror for a laser printing application includes providing a CMOS substrate including a pair of electrodes, and providing a reflecting mirror moveable over the substrate and the electrodes. Voltages applied to the electrodes create an electrostatic force causing an end of the mirror to be attracted to the substrate. A precise position of the mirror can be detected and controlled by sensing a change in capacitance between the mirror ends and the underlying electrodes.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: January 29, 2013
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, William Spencer Worley, III, Dongmin Chen, Ye Wang
  • Patent number: 8314984
    Abstract: An optical deflection device for a display application includes a semiconductor substrate comprising an upper surface region defining an upper surface plane. The optical deflection device also includes one or more electrode devices provided overlying the upper surface region and a hinge device including a silicon material and coupled to the upper surface region at a predetermined height above the upper surface plane. The optical deflection device further comprises a plurality of landing pads including a silicon material and coupled to the upper surface region at the predetermined height from the upper surface plane and a mirror structure. The mirror structure includes a post portion coupled to the hinge device and a mirror plate portion coupled to the post portion.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 20, 2012
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Ye Wang, Yuxiang Wang, Justin Payne, Wook Ji
  • Patent number: 8288851
    Abstract: A system for hermetically sealing devices includes a substrate, which includes a plurality of individual chips. Each of the chips includes a plurality of devices and each of the chips are arranged in a spatial manner as a first array. The system also includes a transparent member of a predetermined thickness, which includes a plurality of recessed regions arranged in a spatial manner as a second array and each of the recessed regions are bordered by a standoff region. The substrate and the transparent member are aligned in a manner to couple each of the plurality of recessed regions to a respective one of said plurality of chips. Each of the chips within one of the respective recessed regions is hermetically sealed by contacting the standoff region of the transparent member to the plurality of first street regions and second street regions using at least a bonding process to isolate each of the chips within one of the recessed regions.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 16, 2012
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen
  • Publication number: 20120248615
    Abstract: A manufacturing process of a MEMS device divides a substrate for fabricating a MEMS component into two electrically isolated regions, so that the MEMS component and the circuit disposed on its surface could connect electrically with another substrate below respectively through the corresponding conducing regions, whereby the configuration of the electrical conducting paths and the manufacturing process are simplified. A MEMS device manufactured by using the aforementioned process is also disclosed herein.
    Type: Application
    Filed: February 21, 2012
    Publication date: October 4, 2012
    Applicant: MIRADIA, INC.
    Inventors: YU-HAO CHIEN, HUA-SHU WU, SHIH-YUNG CHUNG, LI-TIEN TSENG, YU-TE YEH
  • Publication number: 20120228727
    Abstract: A method for fabricating a micro electromechanical device includes providing a first substrate including control circuitry. The first substrate has a top surface and a bottom surface. The method also includes forming an insulating layer on the top surface of the first substrate, removing a first portion of the insulating layer so as to form a plurality of standoff structures, and bonding a second substrate to the first substrate. The method further includes thinning the second substrate to a predetermined thickness and forming a plurality of trenches in the second substrate. Each of the plurality of trenches extends to the top surface of the first substrate. Moreover, the method includes filling at least a portion of each of the plurality of trenches with a conductive material, forming the micro electromechanical device in the second substrate, and bonding a third substrate to the second substrate.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Applicant: Miradia Inc.
    Inventors: Dongmin Chen, Justin Payne, Li-Tien Tseng
  • Patent number: 8247879
    Abstract: A micromechanical device assembly includes a micromechanical device enclosed within a processing region and a lubricant channel formed through an interior wall of the processing region and in fluid communication with the processing region. Lubricant is injected into the lubricant channel via capillary forces and held therein via surface tension of the lubricant against the internal surfaces of the lubrication channel. The lubricant channel containing the lubricant provides a ready supply of fresh lubricant to prevent stiction from occurring between interacting components of the micromechanical device disposed within the processing region.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: August 21, 2012
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, William Spencer Worley, Hung-Nan Chen
  • Publication number: 20120171623
    Abstract: A method for forming an optical deflection device includes providing a semiconductor substrate comprising an upper surface region and a plurality of drive devices within one or more portions of the semiconductor substrate. The upper surface region includes one or more patterned structure regions and at least one open region to expose a portion of the upper surface region to form a resulting surface region. The method also includes forming a planarizing material overlying the resulting surface region to fill the at least one open region and cause formation of an upper planarized layer using the fill material. The method further includes forming a thickness of silicon material at a temperature of less than 300° C. to maintain a state of the planarizing material.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: Miradia Inc.
    Inventors: Xiao Yang, Yuxiang Wang, Wook Ji, Justin Allen Payne, Ye Wang, Howard Woo
  • Patent number: 8207004
    Abstract: A method for fabricating a micro electromechanical device includes providing a first substrate including control circuitry. The first substrate has a top surface and a bottom surface. The method also includes forming an insulating layer on the top surface of the first substrate, removing a first portion of the insulating layer so as to form a plurality of standoff structures, and bonding a second substrate to the first substrate. The method further includes thinning the second substrate to a predetermined thickness and forming a plurality of trenches in the second substrate. Each of the plurality of trenches extends to the top surface of the first substrate. Moreover, the method includes filling at least a portion of each of the plurality of trenches with a conductive material, forming the micro electromechanical device in the second substrate, and bonding a third substrate to the second substrate.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 26, 2012
    Assignee: Miradia Inc.
    Inventors: Dongmin Chen, Justin Payne, Li-Tien Tseng
  • Publication number: 20120146452
    Abstract: A manufacturing method of the MEMS device disposes a conductive circuit to maintain various elements of the MEMS equi-potential thereby preventing electrostatic damages to various elements of the MEMS during the manufacturing process.
    Type: Application
    Filed: November 15, 2011
    Publication date: June 14, 2012
    Applicant: MIRADIA, INC.
    Inventors: HUA-SHU WU, SHIH-YUNG CHUNG, YU-HAO CHIEN, LI-TIEN TSENG, YU-TE YEH
  • Patent number: 8159740
    Abstract: A method for forming an optical deflection device includes providing a semiconductor substrate comprising an upper surface region and a plurality of drive devices within one or more portions of the semiconductor substrate. The upper surface region includes one or more patterned structure regions and at least one open region to expose a portion of the upper surface region to form a resulting surface region. The method also includes forming a planarizing material overlying the resulting surface region to fill the at least one open region and cause formation of an upper planarized layer using the fill material. The method further includes forming a thickness of silicon material at a temperature of less than 300° C. to maintain a state of the planarizing material.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: April 17, 2012
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Yuxiang Wang, Wook Ji, Justin Allen Payne, Ye Wang, Howard Woo
  • Patent number: 8119432
    Abstract: A resonator includes a CMOS substrate having a first electrode and a second electrode. The CMOS substrate is configured to provide one or more control signals to the first electrode. The resonator also includes a resonator structure including a silicon material layer. The resonator structure is coupled to the CMOS substrate and configured to resonate in response to the one or more control signals.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 21, 2012
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen, Ye Wang, Justin Payne, Yuxiang Wang, Wook Ji
  • Publication number: 20120034724
    Abstract: A resonator includes a CMOS substrate having a first electrode and a second electrode. The CMOS substrate is configured to provide one or more control signals to the first electrode. The resonator also includes a resonator structure including a silicon material layer. The resonator structure is coupled to the CMOS substrate and configured to resonate in response to the one or more control signals.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 9, 2012
    Applicant: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen, Ye Wang, Justin Payne, Yuxiang Wang, Wook Ji