Patents Assigned to Mitsubishi Shindoh Co., Ltd.
  • Patent number: 10570483
    Abstract: A copper-based alloy casting includes 69 to 88% of Cu, 2 to 5% of Si, 0.0005 to 0.04% of Zr, 0.01 to 0.25% of P by mass, and a remainder including Zn and inevitable impurities, and satisfies 60?Cu?3.5×Si?3×P?71. Further, mean grain size after melt-solidification is 100 ?m or less, and ?, ? and ?-phases occupy more than 80% of phase structure. Furthermore, the copper-based alloy casting according to the invention can further include at least one element selected from a group consisting of 0.001 to 0.2% of Mg, 0.003 to 0.1% of B, 0.0002 to 0.01% of C, 0.001 to 0.2% of Ti and 0.01 to 0.3% of rare earth element.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: February 25, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 10557185
    Abstract: This free-cutting copper alloy contains 75.0%-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: February 11, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Patent number: 10538828
    Abstract: This free-cutting copper alloy contains 75.0 %-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 21, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Patent number: 10538827
    Abstract: This free-cutting copper alloy casting contains 75.0-78.5% Cu, 2.95-3.55% Si, 0.07-0.28% Sn, 0.06-0.14% P, 0.022-0.20% Pb, with the remainder being made up of Zn and unavoidable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.2?f2=Cu?4.4×Si?0.8×Sn?P+0.5×Pb?62.8. The area ratios (%) of the constituent phases satisfy the following relations: 2.5??65, 0???2.0, 0???0.3, 0???2.0, 96.5?f3=?+?, 99.2?f4=?+?+?+?, 0?f6=?+??3.0, 29?f6=?+6×?1/2+0.5×??66. The long side of the ? phase does not exceed 50 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 21, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Yoshiyuki Goto
  • Publication number: 20190256960
    Abstract: This free-cutting copper alloy casting contains 75.0-78.5% Cu, 2.95-3.55% Si, 0.07-0.28% Sn, 0.06-0.14% P, 0.022-0.20% Pb, with the remainder being made up of Zn and unavoidable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.2?f2=Cu?4.4×Si?0.8×Sn?P+0.5×Pb?62.8. The area ratios (%) of the constituent phases satisfy the following relations: 2.5??65, 0???2.0, 0???0.3, 0???2.0, 96.5?f3=?+?, 99.2?f4=?+?+?+?, 0?f6=?+??3.0, 29?f6=?+6×?1/2+0.5×??66. The long side of the ? phase does not exceed 50 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Application
    Filed: August 15, 2017
    Publication date: August 22, 2019
    Applicant: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Yoshiyuki Goto
  • Patent number: 10311991
    Abstract: A high-strength and high-electrical conductivity copper alloy rolled sheet has an alloy composition containing 0.14 to 0.34 mass % of Co, 0.046 to 0.098 mass % of P, 0.005 to 1.4 mass % of Sn and the balance including Cu and inevitable impurities, wherein [Co] mass % representing a Co content and [P] mass % representing a P content satisfy the relationship of 3.0?([Co]?0.007)/([P]?0.009)?5.9. In a metal structure, precipitates are formed, the shape of the precipitates is substantially circular or elliptical, the precipitates have an average grain diameter of 1.5 to 9.0 nm, or 90% or more of all the precipitates have a diameter of 15 nm or less to be fine precipitates, and the precipitates are uniformly dispersed. With the precipitation of the fine precipitates of Co and P and the solid-solution of Sn, the strength, conductivity and heat resistance are improved and a reduction in costs is realized.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: June 4, 2019
    Assignee: MITSUBISHI SHINDOH CO., LTD.
    Inventor: Keiichiro Oishi
  • Patent number: 10266917
    Abstract: The present invention discloses a heat resistance copper alloy material characterized in that said copper alloy material comprises 0.15 to 0.33 mass percent of Co, 0.041 to 0.089 mass percent of P, 0.02 to 0.25 mass percent of Sn, 0.01 to 0.40 mass percent of Zn and the remaining mass percent of Cu and inevitable impurities, wherein each content of Co, P, Sn and Zn satisfies the relationships 2.4?([Co]?0.02)/[P]?5.2 and 0.20?[Co]+0.5 [P]+0.9 [Sn]+0.1 [Zn]?0.54, wherein [Co], [P], [Sn] and [Zn] are said mass percents of Co, P, Sn and Zn content, respectively; and said copper alloy material is a pipe, plate, bar, wire or worked material obtained by working said pipe, plate, bar or wire material into predetermined shapes.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: April 23, 2019
    Assignee: MITSUBISHI SHINDOH CO., LTD.
    Inventor: Keiichiro Oishi
  • Patent number: 10253405
    Abstract: A Cu—Ni—Si-based copper alloy sheet of the invention has excellent mold abrasion resistance and shear workability while maintaining strength and conductivity, in which 1.0 mass % to 4.0 mass % of Ni is contained, 0.2 mass % to 0.9 mass % of Si is contained, the remainder is made up of Cu and inevitable impurities. The number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a surface layer that is as thick as 20% of the entire sheet thickness from the surface is represented by a particles/mm2, and the number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a portion below the surface layer is represented by b particles/mm2, a/b is in a range of 0.5 to 1.5.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 9, 2019
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Jun-Ichi Kumagai, Yoshio Abe, Akira Saito, Shuzo Umezu, Ryo Iino
  • Patent number: 10190194
    Abstract: One aspect of this copper alloy for an electronic and electrical equipment contains: more than 2.0 mass % to 36.5 mass % of Zn; 0.10 mass % to 0.90 mass % of Sn; 0.15 mass % to less than 1.00 mass % of Ni; and 0.005 mass % to 0.100 mass % of P, with the balance containing Cu and inevitable impurities, wherein atomic ratios of amounts of elements satisfy 3.00<Ni/P<100.00 and 0.10<Sn/Ni<2.90, and a strength ratio TSTD/TSLD of tensile strength TSTD in a direction perpendicular to a rolling direction to tensile strength TSLD in a direction parallel to the rolling direction exceeds 1.09.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 29, 2019
    Assignees: MITSUBISHI MATERIALS CORPORATION, MITSUBISHI SHINDOH CO., LTD.
    Inventors: Kazunari Maki, Hiroyuki Mori, Daiki Yamashita
  • Patent number: 10163539
    Abstract: A high strength and high conductivity copper rod or wire includes Co of 0.12 to 0.32 mass %, P of 0.042 to 0.095 mass %, Sn of 0.005 to 0.70 mass %, and O of 0.00005 to 0.0050 mass %. A relationship of 3.0?([Co]?0.007)/([P]?0.008)?6.2 is satisfied between a content [Co] mass % of Co and a content [P] mass % of P. The remainder includes Cu and inevitable impurities, and the rod or wire is produced by a process including a continuous casting and rolling process. Strength and conductivity of the high strength and high conductivity copper rod or wire are improved by uniform precipitation of a compound of Co and P and by solid solution of Sn. The high strength and high conductivity copper rod or wire is produced by the continuous casting and rolling process, and thus production costs are reduced.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: December 25, 2018
    Assignees: Mitsubishi Shindoh Co., Ltd., Mitsubishi Materials Corporation
    Inventors: Keiichiro Oishi, Kazumasa Hori
  • Patent number: 10155289
    Abstract: A pressure resistant and corrosion resistant copper alloy contains 73.0 mass % to 79.5 mass % of Cu and 2.5 mass % to 4.0 mass % of Si with a remainder composed of Zn and inevitable impurities, in which the content of Cu [Cu] mass % and the content of Si [Si] mass % have a relationship of 62.0?[Cu]?3.6×[Si]?67.5. In addition, the area fraction of the ? phase “?”%, the area fraction of a ? phase “?”%, the area fraction of a ? phase “?”%, the area fraction of the ? phase “?”%, and the area fraction of a ? phase “?”% satisfy 30?“?”?84, 15?“?”?68, “?”+“?”?92, 0.2?“?”/“?”?2, “?”?3, “?”?5, “?”+“?”?6, 0?“?”?7, and 0?“?”+“?”+“?”?8. Also disclosed is a method of manufacturing a brazed structure made of the above pressure resistant and corrosion resistant copper alloy.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: December 18, 2018
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventor: Keiichiro Oishi
  • Publication number: 20180245183
    Abstract: Provided is a copper alloy for an electronic and electric device, including: Mg in a range of 0.5 mass % or more and 3.0 mass % or less; and a Cu balance including inevitable impurities, in which, a graph, in which a vertical axis is d?t/d?t and a horizontal axis is a true strain ?t, d?t/d?t being defined by a true stress ?t and the true strain ?t, obtained in a tensile test of the copper alloy, has a strained region that has a positive slope of d?t/d?t.
    Type: Application
    Filed: September 8, 2016
    Publication date: August 30, 2018
    Applicants: MITSUBISHI MATERIALS CORPORATION, Mitsubishi Shindoh Co., Ltd.
    Inventors: Kazunari MAKI, Yuki ITO, Takanori KOBAYASHI
  • Patent number: 10017841
    Abstract: Copper alloy casting contains Cu: 58-72.5 mass %; Zr: 0.0008-0.045 mass %; P: 0.01-0.25 mass %; one or more elements selected from Pb: 0.01-4 mass %, Bi: 0.01-3 mass %, Se: 0.03-1 mass %, and Te: 0.05-1.2 mass %; and Zn: a remainder, wherein [Cu]?3[P]+0.5([Pb]+[Bi]+[Se]+[Te])=60-90, [P]/[Zr]=0.5-120, and 0.05[?]+([Pb]+[Bi]+[Se]+[Te])=0.45-4 (the content of an element ‘a’ is denoted as [a] mass %; the content of ? phase is denoted as [?]% by area ratio; and an element ‘a’ that is not contained is denoted as [a]=0). The total content of ? phase and ? phase is 85% or more, ? phase content is 25% or less by area ratio, and mean grain size in the macrostructure during melt-solidification is 250 ?m or less.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: July 10, 2018
    Assignee: MITSUBISHI SHINDOH CO., LTD.
    Inventor: Keiichiro Oishi
  • Patent number: 10020088
    Abstract: A copper alloy sheet for terminal and connector materials contains 4.5 mass % to 12.0 mass % of Zn, 0.40 mass % to 0.9 mass % of Sn, 0.01 mass % to 0.08 mass % of P, and 0.20 mass % to 0.85 mass % of Ni with a remainder being Cu and inevitable impurities, a relationship of 11?[Zn]+7.5×[Sn]+16×[P]+3.5×[Ni]?19 is satisfied, a relationship of 7?[Ni]/[P]?40 is satisfied in a case in which the content of Ni is in a range of 0.35 mass % to 0.85 mass %, an average crystal grain diameter is in a range of 2.0 ?m to 8.0 ?m, an average particle diameter of circular or elliptical precipitates is in a range of 4.0 nm to 25.0 nm or a proportion of the number of precipitates having a particle diameter in a range of 4.0 nm to 25.0 nm in the precipitates is 70% or more, an electric conductivity is 29% IACS or more, a percentage of stress relaxation is 30% or less at 150° C. for 1000 hours as stress relaxation resistance, bending workability is R/t?0.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: July 10, 2018
    Assignees: MITSUBISHI SHINDOH CO., LTD., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
  • Patent number: 9970081
    Abstract: Provided is a copper alloy containing 18% by mass to 30% by mass of Zn, 1% by mass to 1.5% by mass of Ni, 0.2% by mass to 1% by mass of Sn, and 0.003% by mass to 0.06% by mass of P, the remainder including Cu and unavoidable impurities. Relationships of 17?f1=[Zn]+5×[Sn]?2×[Ni]?30, 14?f2=[Zn]?0.5×[Sn]?3×[Ni]?26, 8?f3={f1×(32?f1)}1/2×[Ni]?23, 1.3?[Ni]+[Sn]?2.4, 1.5?[Ni]/[Sn]?5.5, and 20?[Ni]/[P]?400 are satisfied. The copper alloy has a metallographic structure of an ? single phase.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: May 15, 2018
    Assignee: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Keiichiro Oishi, Yosuke Nakasato, Takashi Hokazono
  • Patent number: 9957589
    Abstract: The present invention relates to a copper alloy sheet for terminal and connector materials, which is excellent in terms of tensile strength, proof stress, Young's modulus, electric conductivity, bending workability, stress corrosion crack resistance, stress relaxation characteristics and solderability.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: May 1, 2018
    Assignees: Mitsubishi Shindoh Co., Ltd., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
  • Patent number: 9873927
    Abstract: A copper alloy according to the present invention includes 17 mass % to 34 mass % of Zn, 0.02 mass % to 2.0 mass % of Sn, 1.5 mass % to 5 mass % of Ni, and a balance consisting of Cu and unavoidable impurities, in which relationships of 12?f1=[Zn]+5×[Sn]?2×[Ni]?30, 10?[Zn]?0.3×[Sn]?2×[Ni]?28, 10?f3={f1×(32?f1)×[Ni]}1/2?33, 1.2?0.7×[Ni]+[Sn]?4, and 1.4?[Ni]/[Sn]?90 are satisfied, conductivity is 13% IACS to 25% IACS, a ratio of an ? phase is 99.5% or more by area ratio or an area ratio of a ? phase (?) % and an area ratio of a ? phase (?) % in an ? phase matrix satisfy a relationship of 0?2×(?)+(?)?0.7.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: January 23, 2018
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Yosuke Nakasato, Katsuhiko Hata, Shinji Tanaka
  • Patent number: 9653191
    Abstract: The present invention relates to a copper alloy for electric and electronic device, a copper alloy sheet for electric and electronic device, a conductive component for electric and electronic device, and a terminal. The copper alloy for electric and electronic device includes more than 2.0 mass % to 15.0 mass % of Zn; 0.10 mass % to 0.90 mass % of Sn; 0.05 mass % to less than 1.00 mass % of Ni; 0.001 mass % to less than 0.100 mass % of Fe; 0.005 mass % to 0.100 mass % of P; and a remainder comprising Cu and unavoidable impurities, in which 0.002?Fe/Ni<1.500, 3.0<(Ni+Fe)/P<100.0, and 0.10<Sn/(Ni+Fe)<5.00 were satisfied by atomic ratio, and a yield ratio YS/TS is more than 90% which is calculated from a strength TS and a 0.2% yield strength YS when a tensile test is performed in a direction parallel to a rolling direction.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: May 16, 2017
    Assignees: MITSUBISHI MATERIALS CORPORATION, MITSUBISHI SHINDOH CO., LTD.
    Inventors: Kazunari Maki, Hiroyuki Mori, Daiki Yamashita
  • Patent number: 9644251
    Abstract: Provided are a Cu—Zr-based copper alloy plate which retains satisfactory mechanical strength and, at the same time, has a good balance of bending formability and bending elastic limit at a high level and a process for manufacturing the Cu—Zr-based copper alloy plate. The copper alloy plate contains 0.05% to 0.2% by mass of Zr and a remainder including Cu and unavoidable impurities, and the average value of KAM values measured by an EBSD method using a scanning electron microscope equipped with a backscattered electron diffraction pattern system is 1.5° to 1.8°, the R/t ratio is 0.1 to 0.6 wherein R represents the minimum bending radius which does not cause a crack and t represents the thickness of the plate in a W bending test, and the bending elastic limit is 420 N/mm2 to 520 N/mm2.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: May 9, 2017
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshio Abe, Naotake Hirano
  • Publication number: 20160369374
    Abstract: One aspect of this copper alloy for an electronic and electrical equipment contains: more than 2.0 mass % to 36.5 mass % of Zn; 0.10 mass % to 0.90 mass % of Sn; 0.15 mass % to less than 1.00 mass % of Ni; and 0.005 mass % to 0.100 mass % of P, with the balance containing Cu and inevitable impurities, wherein atomic ratios of amounts of elements satisfy 3.00<Ni/P<100.00 and 0.10<Sn/Ni<2.90, and a strength ratio TSTD/TSLD of tensile strength TSTD in a direction perpendicular to a rolling direction to tensile strength TSLD in a direction parallel to the rolling direction exceeds 1.09.
    Type: Application
    Filed: February 20, 2014
    Publication date: December 22, 2016
    Applicants: MITSUBISHI MATERIALS CORPORATION, Mitsubishi Shindoh Co., Ltd.
    Inventors: Kazunari MAKI, Hiroyuki MORI, Daiki YAMASHITA