Patents Assigned to Mitsui Engineering & Shipbuilding
  • Patent number: 10167177
    Abstract: Provided is a crane which can suppress deformation and vibration of a crane structure in travel and stop of the crane. Inverters are installed respectively in travel devices which are arranged on the opposite sides with a gap in a transverse direction. Each of the inverters independently measures a torque generated in a motors to which the inverter is connected and reduces the rotation speed in the command from a controller to the motor such that the greater the measured torque is, the greater a ratio of reduction is.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: January 1, 2019
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Katsunori Ishii, Koji Ohi, Hiroshi Kubo
  • Patent number: 10151272
    Abstract: A fuel supply device for supplying fuel into a combustion chamber of an internal combustion engine is provided. The device includes: a low pressure fuel supply pipe to which a low pressure fuel is supplied; a high pressure fuel supply pipe to which high pressure fuel to be supplied into the combustion chamber is supplied; fuel supply units provided between the low pressure fuel supply pipe and the high pressure fuel supply pipe, each of the fuel supply units being configured to boost the fuel in the low pressure fuel supply pipe and supply the boosted fuel to the high pressure fuel supply pipe; and a control unit configured to control the fuel supply units. The control unit controls the fuel supply units such that a total amount of ejection of the fuel ejected from the fuel supply units per unit time is close to a constant value.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: December 11, 2018
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Makoto Kounosu, Seiichi Kitamura, Renzo Kanda
  • Patent number: 10012195
    Abstract: A fuel supply device includes: a linear actuator; a reciprocating pump having a boosting piston driven by the linear actuator, configured to axially reciprocate, and configured to alternately repeat suction of the fuel and ejection of the fuel more boosted than the fuel at a time of suction by reciprocation of the boosting piston; and a controller to control driving of the linear actuator. When reciprocation amplitude of the boosting piston is A (A>0) and a reciprocating cycle time is T, the controller controls the linear actuator so a maximum value of an absolute value of acceleration when the reciprocating pump sucks the fuel with an absolute value of speed of the boosting piston increasing is smaller than A·(2?/T)2, and so a maximum value of the absolute value of the acceleration of the boosting piston when the reciprocating pump ejects the fuel is larger than A·(2?/T)2.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: July 3, 2018
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Makoto Kounosu, Seiichi Kitamura, Renzo Kanda
  • Publication number: 20180128225
    Abstract: A fuel supply device includes: a linear actuator; a reciprocating pump having a boosting piston driven by the linear actuator and configured to reciprocate in an axial direction, the reciprocating pump being configured to suck the fuel when the boosting piston moves in a first direction and configured to boost and eject the fuel when the boosting piston moves in a second direction; and a controller configured to control driving of the linear actuator so as to adjust an amount of the fuel ejected from a boosting cylinder per reciprocating time by adjusting a ratio of a fuel ejection time and a fuel suction time of the reciprocating pump without changing the reciprocating time of the boosting piston in accordance with a load of the internal combustion engine. The adjustment adjusts a stroke length of the boosting piston and a moving speed of the boosting piston in the second direction.
    Type: Application
    Filed: April 13, 2016
    Publication date: May 10, 2018
    Applicant: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Makoto Kounosu, Seiichi Kitamura, Renzo Kanda
  • Patent number: 9591696
    Abstract: An object is to provide an induction heating method having a high power factor in which when thermal processing is performed through a plurality of heating coils receiving the supply of the current to generate mutual induction. In an induction heating method using an induction heating device that includes self-resonant circuits which feeds currents of equal frequency to a plurality of heating coils receiving the supply of the current to generate mutual induction is connected, wherein adjustment or control is performed to carry out an operation such that a first ratio of a reactance component of a mutual induction impedance to a resistance component of the mutual induction impedance between the adjacent self-resonant circuits and a second ratio of a reactance component of a self-impedance to a resistance component of the self-impedance in the self-resonant circuit are made equal to each other.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 7, 2017
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Uchida, Nobutaka Matsunaka, Keiji Kawanaka, Kazuyoshi Fujita, Takahiro Ao
  • Patent number: 9468226
    Abstract: Objects are to provide an additive for a feed which can improve growth performance and meat quality of livestock, and can improve palatability of the feed, a feed and a method for preparing the feed, and the objects can be solved by an additive for a feed which comprises at least one or two or more of a polyphenol derived from EFB, ?-tocopherol derived from EFB and xyloses derived from EFB, a feed which comprises an additive for a feed being added to a formulating material for a feed in the range of 0.05 to 20% by weight with a dry basis, and a method for preparing the feed.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 18, 2016
    Assignees: Tohoku University, Mitsui Engineereing & Shipbuilding Co., Ltd.
    Inventors: Shunichiro Nishioka, Eri Ishikawa, Toshimi Tsukada, Masamori Kato, Masaaki Toyomizu, Motoi Kikusato, Tomomi Kamizono
  • Patent number: 9287146
    Abstract: To provide an induction heating apparatus that employs a batch-type heating system for heating a large-diameter wafer and can perform uniform heating with a high precision, an induction heating apparatus (10) that heats an inductive-heating target member using a magnetic flux generated from a solenoid-type induction heating coil (18) and heats a wafer (40) using the heat generated from the inductive-heating target member, wherein a plurality of inductive-heating target members 14 (14a, 14b, and 14c) of which principal surface is arranged perpendicularly to a core axis direction of the induction heating coil (18) are interspersed. In the induction heating apparatus (10) described above, a susceptor (12) may be configured by housing the inductive-heating target member (14) in a single holder (16) made of a member having magnetic permeability and heat conductivity.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 15, 2016
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventor: Naoki Uchida
  • Publication number: 20150369228
    Abstract: A fluid intake/discharge valve body for suction of a cryogenic liquefied gas fluid into a cylinder liner and discharge of the gas fluid with a piston, includes: a valve seat body including a fluid supply portion to supply the fluid and a fluid exhaust portion; an intake valve biased against the fluid supply portion; and a discharge valve biased against the fluid exhaust portion. The fluid supply portion includes a supply pathway connected to a supply pipe; a dividing wall including intake holes facing the intake valve; and a counterbore recessed portion on the dividing wall to surround the intake holes. The intake valve abuts an edge of the recessed portion when biased against the fluid supply portion. The discharge valve receives fluid pressure from a side of the discharge hole including a recessed portion disposed in a region wider than an outer periphery of the discharge hole.
    Type: Application
    Filed: December 26, 2014
    Publication date: December 24, 2015
    Applicant: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Makoto KOUNOSU, Renzo KANDA
  • Patent number: 9181557
    Abstract: The present invention provides uracil-requiring Moorella bacteria obtained by destroying a gene coding for orotidine-5-phosphate decarboxylase; and transforming-gene-introduced Moorella bacteria obtained by introducing a gene coding for orotidine-5-phosphate decarboxylase and a transforming-gene to a chromosome of the uracil-requiring Moorella bacteria. The present invention was accomplished by uracil-requiring Moorella bacteria, comprising an MTA-D-pF strain that is obtained by destroying a gene coding for orotidine-5-phosphate decarboxylase on a chromosome of Moorella bacteria.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 10, 2015
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd., Hiroshima University, Gifu University
    Inventors: Yutaka Nakashimada, Akihisa Kita, Tohru Suzuki, Shinsuke Sakai, Kazue Takaoka
  • Patent number: 9173251
    Abstract: A semiconductor substrate thermal treatment apparatus enables excellent heating control in suppressing influence of mutual induction between induction heating coils even when the induction heating coils are arranged in the vertical direction while providing horizontal magnetic flux to susceptors. The apparatus indirectly heats wafers mounted on horizontally-arranged susceptors including induction heating coils to form alternate-current magnetic flux in a direction parallel to a mount face of the susceptor. The wafer are arranged at an outer circumferential side of the susceptor. The induction heating coils are structured with at least one main heating coil and subordinate heating coils electromagnetically coupled with the main heating coil.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 27, 2015
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Uchida, Yoshihiro Okazaki, Kazuhiro Ozaki
  • Publication number: 20150289321
    Abstract: A control is performed so that phase angles of outputs from resonant inverters fall within a predetermined range under a mutual induction environment. An inductive heating device (100) includes: a plurality of resonant inverters (30a, 30b) that supply power to a plurality of inductive heating coils (La, Lb), respectively, under a mutual induction environment; and a control circuit (40) that aligns drive frequencies so as to be in common among the resonant inverters and controls the drive frequencies commonly so that phase angles of the outputs from the plurality of the resonant inverters fall within a predetermined range. In addition, the control circuit individually controls coil currents flowing through the inductive heating coils so that the phase angles fall within a predetermined range.
    Type: Application
    Filed: October 30, 2013
    Publication date: October 8, 2015
    Applicant: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventor: Naoki Uchida
  • Patent number: 8993283
    Abstract: A production method for biomass-alcohol includes a saccharification step of saccharifying biomass, a first concentrating step of ultrasonically vibrating the saccharified solution and atomizing the saccharified solution into a mist, so as to elevate the sugar concentration in the saccharified solution by removing water from the saccharified solution, a fermentation step of fermenting the saccharified solution concentrated in the first concentrating step to form an alcohol water solution, and second concentrating step of separating alcohol from the alcohol water solution fermented in the fermentation step.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: March 31, 2015
    Assignees: Ultrasound Brewery, Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Kazuo Matsuura, Fusatsugu Abe, Tetsuo Fukazu, Takuji Cho, Kousuke Kimoto
  • Publication number: 20150068970
    Abstract: A water-treatment membrane module with raw-water manifolds connected in common to both end portions of spiral membrane modules and allowing raw water to flow in or out of the spiral membrane modules, in which each of the manifolds comprises a box and cover which may be opened for inspection and access to a treated water manifold in fluid communication with the water collecting pipes.
    Type: Application
    Filed: December 28, 2012
    Publication date: March 12, 2015
    Applicant: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Takuji Cho, Makoto Naito, Shunsuke Yamazaki
  • Publication number: 20150044690
    Abstract: FRET measurement uses a FRET probe that includes a probe element X containing a donor fluorescent substance and a probe element Y containing an acceptor fluorescent substance and enables FRET to occur when the probe element X and the probe element Y approach to each other or bind together. The modulation frequency of laser light with which the FRET probe is irradiated is adjusted to an optimum modulation frequency that maximizes a difference between the phase difference of donor fluorescence emitted from the donor fluorescent substance with respect to intensity modulation of the laser light at the time when FRET occurs and the phase difference of donor fluorescence emitted from the donor fluorescent substance with respect to intensity modulation of the laser light at the time when FRET does not occur.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 12, 2015
    Applicants: Mitsui Engineering & Shipbuilding Co., Ltd., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shigeyuki Nakada, Yusuke Ohba, Kyouji Doi, Yumi Asano
  • Publication number: 20150044763
    Abstract: FRET measurement uses a FRET probe that includes a probe element X labeled with a donor fluorescent substance and a probe element Y labeled with an acceptor fluorescent substance and enables FRET to occur when the probe element X and the probe element Y approach to each other or bind together. A test sample as a measuring object in FRET measurement contains a test object about which it is unknown whether or not it has an approaching/binding property of allowing the probe element X and the probe element Y to approach to each other or bind together or a separating property of separating from each other the probe element X and the probe element Y that are in a state where they adjoin each other or bind together. A plurality of sets of a fluorescence lifetime ?sample and a ratiometry Rsample obtained by this measurement are used to judge whether or not the test object has the approaching/binding property or the separating property.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 12, 2015
    Applicants: Mitsui Engineering & Shipbuilding Co., Ltd., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shigeyuki Nakada, Yusuke Ohba, Kyouji Doi, Yumi Asano
  • Patent number: 8927781
    Abstract: A method for producing ethanol by which ethanol can be synthesized from less fermentable biomass materials such as plant-derived materials and rice straws and industrial waste biomass materials such as wooden building materials and pulp and which can therefore broaden the range of raw materials for the production of ethanol. Specifically, a method for producing ethanol including reacting a raw material gas obtained by a thermochemical gasification reaction of biomass in the presence of a catalyst containing rhodium, at least one transition metal, and at least one element selected from lithium, magnesium and zinc.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 6, 2015
    Assignees: Ichikawa Office Inc., Mitsui Engineering & Shipbuilding Co. Ltd.
    Inventor: Masaru Ichikawa
  • Patent number: 8921626
    Abstract: The operation of a plant for producing a gas hydrate is stabilized by making the gas phase within a downstream step have the same equilibrium composition as that of the gas phase within a generation step. The gas phase within a mixed-gas hydrate generation step is circulated to the gas phase within a downstream step located downstream of the mixed-gas hydrate generation step, and the gas phase within each step is thereby made to have the same equilibrium composition as that of the gas phase within the generation step.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 30, 2014
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Masahiro Takahashi, Nobuyasu Kanda, Kenichi Sano, Toru Iwasaki
  • Patent number: 8905016
    Abstract: A heliostat capable of collecting light with high efficiency and having reduced manufacturing and installation costs; and a method of controlling the heliostat. The heliostat includes a reflecting mirror configured to reflect sunlight; and a support mechanism configured to tiltably support the reflecting mirror. The support mechanism has a single supporting column and first and second cylinders. The reflecting mirror is supported at its back surface by a supporting column upper end of the supporting column, a first cylinder upper end of the first cylinder and a second cylinder upper end of the second cylinder in a tiltable manner, which are arranged to form a triangle on the back surface of the reflecting mirror. A gimbal bearing connects the supporting column upper end and the reflecting mirror, the gimbal bearing being configured to be tiltable in two axial directions intersecting with each other.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 9, 2014
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Shoji Sakai, Shiro Hayasaka, Katsuyoshi Abe, Kozo Ito
  • Patent number: 8890042
    Abstract: The present invention includes: a plurality of induction heating coils (11, 12, 13) which are disposed adjacently; capacitors (21, 22, 23) each of which is connected in series thereto; a plurality of inverters (30, 35, 31) each of which applies a high frequency voltage converted from a DC voltage to each series resonant circuit of the induction heating coil and the capacitor; and a control circuit (50) which operates the plurality of the inverters with a same frequency and current synchronization, controls so that a phase difference becomes minimal at a specific inverter, which supplies the maximum power to the plurality of the induction heating coils, between the high frequency voltage generated therefrom, and a resonant current flowing the series resonant circuit, and set a DC power supply voltage Vdc applied to the plurality of the inverters so that the output voltages (Vinv) become greater than mutual induction voltages (Vm).
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: November 18, 2014
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Uchida, Keiji Kawanaka, Takahiro Ao
  • Patent number: 8885165
    Abstract: A fluorescence detecting device receives fluorescence emitted by n kinds of measurement objects within wavelength bands FLk (k is an integer of 1 to n) set so that the fluorescence intensity of fluorescence emitted by a measurement object k becomes higher than that of fluorescence emitted by the other one or more measurement objects, and acquires fluorescent signals corresponding to the wavelength bands FLk (k is an integer of 1 to n). Each of the fluorescent signals is subjected to frequency-down conversion by mixing it with a modulation signal for modulating the intensity of a laser beam Lk (k=1) corresponding to at least one of the wavelength bands FLk to produce fluorescence data including the phase delay and intensity amplitude of the fluorescent signal. The fluorescence data is corrected to calculate the phase delay and a fluorescence relaxation time is calculated using the phase delay.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: November 11, 2014
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Kazuteru Hoshishima, Shigeyuki Nakada