Abstract: A negative electrode for a lithium ion secondary battery, the negative electrode including a negative electrode current collector and a negative electrode mixture layer that is applied to at least one side of the negative electrode current collector, the negative electrode mixture layer containing a negative electrode active material, a conductive auxiliary, a binder, a polymer particle having a softening point of from 70° C. to 150° C., and a thermally expandable microcapsule having a maximum volume expansion temperature that is higher than the softening point of the polymer particle.
Abstract: The present invention provides a photocurable composition for use in stereolithography, the photocurable composition including: a (meth)acrylic monomer (X) that is at least one selected from the group consisting of di(meth)acrylic monomers containing, within one molecule, two aromatic rings and two (meth)acryloyloxy groups, and that has a weight average molecular weight of from 400 to 580; a (meth)acrylic monomer (D) that is at least one selected from the group consisting of (meth)acrylic monomers containing, within one molecule, at least one aromatic ring and one (meth)acryloyloxy group, and that has a weight average molecular weight of from 140 to 350; and a photopolymerization initiator.
Abstract: Provided is a method of producing a porous molded body, the method including: the step of obtaining a molded body by molding a raw material that contains from 1 part by mass to 100 parts by mass of a bicarbonate compound (A) represented by AHCO3 (wherein, A represents Na or K) and from 0 parts by mass to 99 parts by mass of a compound (B) represented by BnX (wherein, B represents Na or K; X represents CO3, SO4, SiO3, F, Cl, or Br; and n represents an integer of 1 or 2 as determined by the valence of X) (provided that a total amount of (A) and (B) is 100 parts by mass); and the step of obtaining a porous molded body by performing a heat treatment of the molded body in a temperature range of from 100° C. to 500° C. and an atmosphere that contains water vapor in an amount of from 1.0 g/m3 to 750,000 g/m3 and thereby thermally decomposing not less than 90% by mass of the bicarbonate compound (A).
Abstract: A method for creating image data of a dental shaped object has steps of: acquiring image data of a dental shaped object having a side-wall portion forming a horseshoe-shaped concave portion; creating image data of a reinforcing member that reinforces the side-wall portion in CAD; and connecting the image data of the dental shaped object and the image data of the reinforcing member.
Abstract: A split-type laminated iron core is composed by laminating a plurality of metal plate materials having an annular shape. The metal plate material includes a first split piece and a second split piece arranged in a circumferential direction and divided by a predetermined cutting line. A shear surface formed on a first end surface of the first split piece and a shear surface formed on a second end surface of the second split piece abut on each other, and the first split piece and the second split piece are temporarily connected via the cutting line defined by a boundary between the first end surface and the second end surface so that the first end surface and the second end surface do not completely overlap.
Abstract: The present invention provides a photocurable composition for use in stereolithography, the photocurable composition including: a (meth)acrylic monomer (X) that is at least one selected from the group consisting of di(meth)acrylic monomers containing, within one molecule, two aromatic rings and two (meth)acryloyloxy groups, and that has a weight average molecular weight of from 400 to 580; a (meth)acrylic monomer (D) that is at least one selected from the group consisting of (meth)acrylic monomers containing, within one molecule, at least one aromatic ring and one (meth)acryloyloxy group, and that has a weight average molecular weight of from 140 to 350; and a photopolymerization initiator.
Abstract: A masterbatch of a liquid additive is provided, the resin composition for the masterbatch comprising (a) a block copolymer or a hydrogenated product thereof, the block copolymer containing a polymer block having a vinyl aromatic compound as a main component and a polymer block having a conjugated diene compound as a main component, and 40 to 100 parts by mass of a polyolefinic resin and 100 to 150 parts by mass of an ethylene·?-olefin copolymer with respect to 100 parts by mass of the (a) component, wherein the kinematic viscosity at 100° C. is 10 to 5,000 mm2/s; the ethylene molar content is in the range of 30 to 85 mol %; and the molecular weight distribution (Mw/Mn) for the molecular weight measured by gel permeation chromatography (GPC) with reference to polystyrene is not more than 2.5.
Abstract: A manufacturing method of a laminated iron core by laminating a plurality of blanked members to form a laminate, the laminate including a pair of first and second end surfaces and the plurality of blanked members being interlocked by a caulk in a lamination direction of the laminate, includes: forming the laminate such that a protrusion of the caulk protrudes downward from the first end surface being in a downward state; placing the laminate on support such that the protrusion is not in contact with a support surface of the support; and processing the laminate in a state where the laminate is placed on the support.
Type:
Grant
Filed:
March 5, 2019
Date of Patent:
September 26, 2023
Assignee:
MITSUI HIGH-TEC, INC.
Inventors:
Shigeru Nagasugi, Takashi Fukumoto, Jin Oda
Abstract: Provided are a protective film and a back grinding method for a semiconductor wafer, which can suppress occurrence of suction defect. A protective film is a film that protects a surface of a semiconductor wafer on which a circuit is formed when a back surface of the semiconductor wafer is ground in a state where the surface of the semiconductor wafer is sucked to a fixture. The protective film has a pressure-sensitive adhesive layer, a base material layer, and an auxiliary layer. The pressure-sensitive adhesive layer is a layer to be stuck to the semiconductor wafer, the auxiliary layer is a layer to be contact to the fixture, and the semiconductor wafer is a semiconductor wafer having a level difference on an outer peripheral edge of the surface on which the circuit is formed.
Abstract: An object of the present invention is to obtain an ethylene-based polymer composition useful as a material for shaped articles having a low surface resistivity and a low volume resistivity and exhibiting excellent slidability. The present invention pertains to an ethylene-based polymer composition containing an ethylene-based polymer (A) and a carbon-based filler (C), the ethylene-based polymer composition having a melt flow rate (MFR) in the range of 0.1 to 20 g/10 min as measured in accordance with JIS K7210-1: 2014 at a measurement temperature of 230° C. under a load of 10 kgf.
Abstract: The purpose of the present invention is to obtain an ethylene??-olefin?non-conjugated polyene copolymer that has a low permanent compression set at low temperatures, is flexible, and has an excellent balance of rubber elasticity at low temperatures and tensile strength at normal temperatures. This ethylene-based polymer is an ethylene??-olefin?non-conjugated polyene copolymer that includes units derived from ethylene (A), units derived from an ?-olefin (B) containing 4-20 carbon atoms, and units derived from a non-conjugated polyene (C) and satisfies (1)-(4). (1) The molar ratio of (A) to (B) is 40/60-90/10, (2) the contained amount of the units derived from (C) is 0.1-6.0 mol %, (3) ML(1+4) 125° C. is 5-100, and (4) the B value is 1.20 or more.
Abstract: An extremely thin copper foil with a carrier is provided that can keep stable releasability even after being heated for a prolonged time at a high temperature of 350° C. or more. The extremely thin copper foil with a carrier includes a carrier composed of a glass or ceramic material; an intermediate layer provided on the carrier and composed of at least one metal selected from the group consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, and Mo; a release layer provided on the intermediate layer and including a carbon sublayer and a metal oxide sublayer or containing metal oxide and carbon; and an extremely thin copper layer provided on the release layer.
Abstract: A porous formed body (Y) including a porous formed body (X) that satisfies the following (x-1) to (x-3), and an alkali metal carbonate or an alkali metal bicarbonate, in which a content of the alkali metal carbonate or the alkali metal bicarbonate is in a range of from 1 part by mass to 230 parts by mass, with respect to 100 parts by mass of the porous formed body (X), and a production method thereof, an ?-olefin dimerization catalyst and a production method thereof, and a method of producing an ?-olefin dimer: requirement (x-1): a volume of pores with a pore diameter in a range of from 0.01 ?m to 100 ?m is from 0.10 mL/g to 1.00 mL/g; requirement (x-2): a median pore diameter of pores with a pore diameter in a range of from 0.01 ?m to 100 ?m is from more than 0.01 ?m to 10.0 ?m; and requirement (x-3): a crushing strength is from 0.7 kgf to 15.0 kgf.
Type:
Grant
Filed:
March 28, 2019
Date of Patent:
September 19, 2023
Assignee:
MITSUI CHEMICALS, INC.
Inventors:
Ryo Niishiro, Jun Kawahara, Masami Murakami
Abstract: There are provided a laminated iron core, a manufacturing method thereof, and a progressive die machine, in which the laminated iron core includes: a plurality of iron core pieces which are laminated; adhesives that bond the iron core pieces adjacent to each other. Each of the iron core pieces includes an annular yoke portion and a plurality of teeth portions projecting radially from the yoke portion. Each of the adhesives is arranged at a different radial distance from a central axis of the iron core pieces and is evenly arranged in a circumferential direction of the iron core pieces on at least one of the entire yoke portion and the entire teeth portions.
Abstract: A method of producing a polyamine compound, the method including: a first step of generating a polyurea compound by reacting a thiourethane resin and an amine compound A with each other; and a second step of generating a polyamine compound by reacting the polyurea compound and an amine compound B with each other.
Abstract: A xylylene diisocyanate, a compound represented by the following chemical formula (1), and a compound represented by the following chemical formula (2) are contained in a xylylene diisocyanate composition.
Abstract: A glass carrier-attached copper foil is provided that can achieve a desired circuit mounting board that reduces separation of a copper layer at the cut edge even if the copper foil is downsized to dimensions enabling mount of a circuit, and has an intended circuit pattern with a fine pitch. The glass carrier-attached copper foil includes a glass carrier, a release layer, and a copper layer with a thickness of 0.1 to 3.0 ?m. The glass carrier has, at least on its surface having the copper layer thereon, a plurality of flat regions each having a maximum height Rz of less than 1.0 ?m as measured in accordance with JIS B 0601-2001 and a rough region having a maximum height Rz of 1.0 to 30.0 ?m as measured in accordance with JIS B 0601-2001. The rough region has a pattern of lines that define the flat regions.
Abstract: The present invention relates to a digestive lipase activity inhibitor containing, as an active ingredient, at least one selected from the group consisting of linoleic acid and oleic acid.
Type:
Application
Filed:
August 2, 2021
Publication date:
September 7, 2023
Applicants:
Pharma Foods International Co., Ltd., Mitsui DM Sugar Co.,Ltd.
Abstract: A method for manufacturing electronic apparatus includes: a step (A) of preparing a structure provided with an adhesive film and one or two or more electronic components affixed to an adhesive surface of the adhesive film; a step (B) of disposing the structure in the electronic component testing apparatus such that the electronic component is positioned over an electronic component installation region of a sample stand of the electronic component testing apparatus in a defined manner; a step (C) of evaluating the properties of the electronic component in a state of being affixed to the adhesive film with the probe terminal being in contact with a terminal of the electronic component; and a step (D) of picking up the electronic component from the adhesive film after the step (C). A defined sample stand is also provided.