Abstract: A method of producing lithium difluorophosphate includes: providing a crude product containing lithium difluorophosphate; obtaining a solution by dissolving the crude product in a mixed solvent in which at least one solvent (X) selected from the group consisting of ethyl acetate, acetone, dimethoxyethane, diethylene glycol dimethyl ether and triethylene glycol dimethyl ether, and at least one solvent (Y) selected from the group consisting of toluene, xylene, hexane, acetonitrile, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, are mixed at a mass ratio (the solvent (X)/the solvent (Y)) in a range from 70/30 to 95/5; and extracting lithium difluorophosphate from the solution.
Abstract: Disclosed is a thermostable DNA polymerase preparation which can illimitably reduce the risk of false positivity in the detection of a subject microorganism utilizing a gene amplification reaction and therefore enables the selective amplification of DNA for detecting the subject microorganism even when the amount of the subject microorganism is small and therefore the amount of DNA collected therefrom is extremely small, and can be produced at a reduced cost. Also disclosed is a method for quantifying or quantifying/identifying a subject organism to be detected rapidly, conveniently and with high sensitivity using the preparation of the present invention.
Type:
Grant
Filed:
August 28, 2017
Date of Patent:
December 10, 2019
Assignees:
HOKKAIDO MITSUI CHEMICALS INC., NATIONAL UNIVERSITY CORPORATION UNIVERSITY OF TOYAMA
Abstract: An electronic device with pressing input function has a substantially rectangular parallelepiped-shaped housing. A display panel with pressure sensor and an arithmetic circuit module are disposed in the housing. The display panel with pressure sensor is composed of a pressure sensor and a display panel. In the display panel, a front polarizing plate is disposed on a front face of a liquid crystal panel. In the pressure sensor, electrodes are formed on both respective flat plate faces of a piezoelectric film having birefringence. The pressure sensor is disposed between the liquid crystal panel and the front polarizing plate of the display panel, and a uniaxial drawing direction of the piezoelectric film is parallel to a polarizing direction of the front polarizing plate.
Type:
Grant
Filed:
November 4, 2015
Date of Patent:
December 10, 2019
Assignees:
MURATA MANUFACTURING CO., LTD., MITSUI CHEMICALS, INC.
Abstract: Provided is a formed body containing at least one carbonate compound (A1) selected from Na2CO3 or K2CO3, the formed body having a volume of pores with a pore diameter of from 0.05 ?m to 10 ?m of from 0.10 mL/g to 0.30 mL/g and a crushing strength of from 1.8 kgf to 10.0 kgf.
Abstract: Provided is a novel negative electrode for nonaqueous electrolyte secondary batteries, which is capable of improving cycle characteristics and is also capable of suppressing aggregation of active material particles in a slurry. The negative electrode active material for nonaqueous electrolyte secondary batteries contains silicon and has a D50 of 0.1 ?m to 5 ?m, and an amount of water measured at 120° C. to 300° C. by the Karl-Fischer method (referred to as “amount of water”) per specific surface area (referred to as “CS”), that is, the amount of water/CS, of 0.1 to 80 ppm/(m2/cc).
Abstract: A method of manufacturing a stacked core includes forming a first pilot hole in a strip-like metal plate by a first punch, and working a predetermined portion of the metal plate by a second punch, in a state in which a first pilot pin is inserted into the first pilot hole. A worked portion of the metal plate that is worked by the second punch is press-fitted into the metal plate, in a state in which a first pilot pin is inserted into the first pilot hole, and a second pilot hole is formed in the metal plate by a third punch, after press-fitting the worked portion into the metal plate and before performing another work on the metal plate. Additionally, the method includes forming a blanked member by blanking a region including the worked portion by a fourth punch, in a state in which a second pilot pin is inserted into the second pilot hole.
Abstract: Provided are monomers useful for dental materials that include a compound in which a core and a specific terminal group are bonded to each other directly or via a linking group, wherein the core is a C1-200 polyvalent organic group having a valence of not less than 3 containing an oxygen atom or a nitrogen atom in which an atom bonded to the terminal group or the linking group is the oxygen atom or the nitrogen atom; the terminal group is a specific (meth)acryloyl group-containing group, a (meth)acryloyl group, a C1-20 hydrocarbon group or a hydrogen atom, and the terminal group needs to meet specific requirements; and the linking group is a specific divalent group, and when the compound contains a plurality of linking groups, the linking groups may be the same as or different from each other. Compositions, dental materials and kits are also provided.
Abstract: Provided is a component-manufacturing film that includes a first region S1 and a second region S2 disposed so as to surround the region S1; the region S1 is formed of a base layer and an adhesive layer provided on one surface side of the base layer; the region S2 is formed of the base layer, the adhesive layer, and an additional layer affixed onto the layer. In the temperature range of 190° C. or lower, a tensile elastic modulus of the additional layer is equal to or greater than the tensile elastic modulus of the base layer. Further provided are a component-manufacturing tool and method, the latter including a component fixing step; a film placement step of performing placement so that the boundary between the region S1 and the region S2 is located inside with respect to an edge of the chuck table; a chucking step; and a heating step.
Abstract: A mutant nitrile hydratase that is derived from Pseudonocardia thermophila and has an ? subunit and a ? subunit, wherein a specific amino acid residue has been substituted for the amino acid residue in at least one position selected from the group consisting of the 40th and 43rd residues from the N terminal of the ? subunit, and the 205th, 206th, and 215th residues from the N terminal of the ? subunit.
Type:
Application
Filed:
December 27, 2017
Publication date:
December 5, 2019
Applicant:
Mitsui Chemicals, Inc.
Inventors:
Toshihiro TATENO, Junko TOKUDA, Keiichirou KAI
Abstract: This invention relates to a preparation for a polyurethane foam and a polymer polyol preparation for a polyurethane foam, each of which exhibits high coloration and discoloration inhibition properties over a long period of time when stored, and to a composition for a polyurethane foam, which is excellent in storage stability and is preferable as a resin premix. The composition comprises (i) at least one polyol, (ii) a compound having a P?N bond, (iii) an antioxidant having a hydroxyphenyl group, (iv) at least an acid and/or its salt, (v) a catalyst for polyurethane foam production and (vi) a blowing agent.
Type:
Grant
Filed:
July 23, 2012
Date of Patent:
December 3, 2019
Assignee:
MITSUI CHEMICALS & SKC POLYURETHANES INC.
Abstract: A laminated rotor core (36) wherein permanent magnets (47) are inserted in respective magnet insertion holes (46) is disposed between and pressed by an upper die (37) and a lower die (29). The upper die (37) has resin reservoir pots (50) provided above the laminated rotor core (36) and at positions corresponding to the respective magnet insertion holes (46). Raw resin material put in the resin reservoir pots (50) is heated by the upper die (37). Subsequently, the resin material in a liquefied state is ejected from the resin reservoir pots (50) by plungers (52) that are inserted and moves vertically in the resin reservoir pots (50) and is directly filled in the magnet insertion holes (46). Consequently, the respective magnet insertion holes (46) are filled with the resin material more evenly and highly reliable products can be supplied at low cost.
Abstract: An object of the present invention is to provide a laminate of an olefin-type rubber, which is non-polar or has a small polarity and which is difficult to bond with a different material, and a rubber including Group 16 elements and/or Group 17 elements, which is a different kind of rubber. The laminate according to the present invention includes a structure including, in order, an olefin-type rubber layer (A) ; an adhesive resin layer (B) containing at least one selected from the group consisting of an ethylene/vinyl acetate copolymer, a silane-modified ethylene/vinyl acetate copolymer, an ethylene/acrylic acid copolymer and an ionomer thereof, and an ethylene/methacrylic acid copolymer and an ionomer thereof; and a rubber layer (C) containing Group 16 elements and/or Group 17 elements.
Abstract: A method of manufacturing a stacked stator core comprises forming a stack that comprises an annular yoke portion, a plurality of tooth portions, and a plurality of slots. The method further comprises inserting a mold core member of the plurality of mold core members into a slot of the plurality of slots, the mold core member comprising a body portion and a closing portion connected to the body portion, the body portion extending along a longitudinal direction of the slot and spaced apart from an inner wall surface of the slot, the closing portion being positioned on a slot opening side of the slot and closing an open end portion of the slot on the slot opening side. Additionally, the method comprises forming a resin portion by charging a melted resin into a filling space between the slot and the mold core member.
Abstract: There is provided a copper foil provided with a carrier exhibiting a high peeling resistance against the developer in the photoresist developing process and achieving high stability of mechanical peel strength of the carrier. The copper foil provided with a carrier comprises a carrier; an interlayer disposed on the carrier, the interlayer having a first surface adjacent to the carrier and containing 1.0 atom % or more of at least one metal selected from the group consisting of Ti, Cr, Mo, Mn, W and Ni and a second surface remote from the carrier and containing 30 atom % or more of Cu; a release layer disposed on the interlayer; and an extremely-thin copper layer disposed on the release layer.
Abstract: Provided are a pellicle for extreme ultraviolet light lithography, a production method thereof, and an exposure method. A pellicle according to the present invention includes a first frame having a pellicle film located thereon; a second frame including a thick portion including a first surface carrying a surface of the first frame opposite to a surface on which the pellicle film is located, and also including a second surface connected with the first surface and carrying a side surface of the first frame, the second frame enclosing the pellicle film and the first frame; a through-hole provided in the thick portion of the second frame; and a filter located on an outer side surface of the second frame and covering the through-hole, the outer side surface crossing the surface of the first frame on which the pellicle film is located.
Abstract: A novel silver-coated copper powder, particularly a silver-coated copper powder particle having a dendritic shape, having increased electrical conductivity with no need to increase the silver content is provided. The silver-coated copper powder is composed of a silver-coated copper particle coated with a silver layer containing silver or a silver alloy, including a silver-coated copper particle having a dendritic shape, containing nitrogen (N) in the silver layer, and having a nitrogen (N) content of 0.2 to 10.0 parts by mass with respect to 100 parts by mass of the silver content.
Abstract: Proposed is a novel negative electrode for nonaqueous electrolyte secondary batteries in which the battery capacity does not decrease even when charging and discharging are repeated. Proposed is a silicon-containing negative electrode active material for nonaqueous electrolyte secondary batteries, comprising negative electrode active material particles which are provided with a surface layer containing carbon and titanium or aluminum on the entirety or a portion of the surface of the active material.
Abstract: Provided are an electronic-device-protecting film used when semiconductor parts obtained by segmentation are to be sealed in the form of an array using a sealant after the semiconductor parts are rearranged, wherein the curing temperature of the sealant does not need to be adjusted downward; an electronic-device-protecting member; a method for manufacturing an electronic device; and a method for manufacturing a package. The electronic-device-protecting film includes a base layer and an adhesive layer, and the method includes: bonding the adhesive layer to one surface of a frame having an opening, the adhesive layer being bonded so as to cover the opening; subsequently bonding a plurality of semiconductor parts to the surface of the adhesive layer that is exposed via the opening with the semiconductor parts set apart from each other; subsequently covering the semiconductor parts and the surface of the adhesive layer with a sealant; and heat-curing the sealant.
Abstract: Disclosed is a method for readily and inexpensively producing zeolite without using an organic structure-directing agent (organic SDA). Specifically disclosed is a method whereby a gel containing a silica source, an alumina source, an alkaline source and water is reacted with zeolite seed crystals, to produce a zeolite with the same kind of skeletal structure as the zeolite. The gel used is a gel of a composition whereby, when a zeolite is synthesized from this gel only, the synthesized zeolite comprises at least one of the kinds of composite building units of the target zeolite.
Type:
Grant
Filed:
April 20, 2017
Date of Patent:
November 19, 2019
Assignee:
Mitsui Mining & Smelting Co., Ltd.
Inventors:
Keiji Itabashi, Tatsuya Okubo, Yoshihiro Kamimura, Shanmugam Palani Elangovan
Abstract: The present invention provides polymerizable monomers represented by the following general formula (1) that are useful as dental materials. In the general formula (1), Ra is a divalent C6-9 aromatic hydrocarbon group or a divalent C6-9 optionally bridged cyclic hydrocarbon group, R1 and R2 are each a hydrogen atom or a C1-3 alkyl group, R3, R4, R5 and R6 are each a hydrogen atom or a hydrocarbon group, R7 and R8 are each a hydrogen atom or a methyl group, m and n are each independently 0 to 4, and Rb and Rc are each independently a C2-6 linear alkylene or C2-6 linear oxyalkylene group optionally substituted with a C1-3 alkyl group or a (meth)acryloyloxymethylene group in place of a hydrogen atom.
Type:
Grant
Filed:
March 31, 2016
Date of Patent:
November 12, 2019
Assignees:
MITSUI CHEMICALS, INC., SUN MEDICAL CO., LTD.