Abstract: Methods and apparatus are disclosed for efficient switching regulators that adapt automatically to, and operate with, input voltages that are above, below, or equal to the output voltage. The disclosed switching regulators demonstrate advantages of both buck and boost converters at high efficiency.
Abstract: Methods and apparatus are disclosed for converting DC power to AC and for driving multiple discharge lamps and, more particularly, Cold Cathode Fluorescent Lamps (CCFLs), External Electrode Fluorescent Lamps (EEFLs), and Flat Fluorescent Lamps (FFLs). Disclosed methods, among other advantages, allow accurate current sharing among the lamps, minimization of the total number of power switches, and, in general, simplification of the complexity of the control system.
Abstract: The present invention discloses a DC/AC converter in the backlight power supply system using cold cathode fluorescent lamp (CCFL). The DC/AC converter comprises a front end DC/DC converter, a full-bridge or half bridge inverter, and a piezoelectric transformer. Even with a wide range of input voltages, the front end DC/DC converter produces a predetermined DC voltage or a DC voltage with a predetermined small range and the cascaded inverter operates with a switching frequency close to the resonant frequency of the piezoelectric transformer, which helps the backlight power supply system achieve high efficiency.
Type:
Application
Filed:
October 17, 2006
Publication date:
April 19, 2007
Applicant:
Monolithic Power System, Inc.
Inventors:
Junming Zhang, Xiaopeng Dong, Yuancheng Ren, Wei Chen, Eric Yang
Abstract: A circuit provides a voltage reference using very low power. It can also be used as a shut regulator for a quiescent current as low as 1.5 ?A. It includes a transconductance amplifier, a gain stage, and a power transistor. One embodiment of this invention utilizes a work function difference between p+ gate and n+ gate to generate a predetermined reference voltage. In another embodiment of this invention, the predetermined reference voltage can be pre-adjusted using gate materials with different work functions.
Abstract: Methods and apparatus are disclosed for protecting circuits from damages caused by elevated temperatures. Presented embodiments illustrate IC thermal protection circuits that shut down power delivery circuits when the circuit temperature reaches a predefined upper threshold and restart the circuit when the circuit cools down to a predefined lower threshold. Other embodiments provide soft shutdown and soft restart, where not only the temperature range between the shutdown and the restart is predetermined, but also the time between the start of a shutdown process and the complete shutdown is controllable.
Abstract: Embodiments of isolated gate driver circuits are disclosed for driving high- and low-side switching devices for half- and full-bridge power converter topology. Disclosed circuits provide sufficient dead-time, operate over a wide range of duty cycles, and require a single power supply (Vcc). Typical applications for such circuits include cold cathode fluorescent lamp (CCFL) inverters that are powered by a high voltage DC rail.
Abstract: A method for automatically adjusting the intensity of a lighting element based on feedback from internal and external sources of light is disclosed herein. A photosensitive element senses ambient light and transmits an electrical signal proportional to the intensity of the ambient light to a driver. The driver automatically adjusts the intensity of the lighting element based on this feedback to provide optimal conditions for the application. In addition, the lighting element transmits an electrical signal proportional to the intensity of the light from the lighting element to a driver. The driver further adjusts the intensity of the lighting element based on this feedback to provide optimal conditions for the application.
Type:
Application
Filed:
July 14, 2006
Publication date:
January 25, 2007
Applicant:
Monolithic Power Systems, Inc.
Inventors:
James Moyer, Michael Hsing, Jean-Francois Daviet
Abstract: A technique for driving one or more EEFLs, having first and second ends, in a bank of EEFLs involves driving the EEFLs at both the first and second ends. In a non-limiting embodiment a device constructed according to the technique includes a bank of EEFLs connected in parallel. The device further includes a first transformer, wherein a secondary winding of the first transformer is coupled to the first end of the bank of EEFLs. The device further includes a second transformer, wherein a secondary winding of the second transformer is coupled to the second end of the bank of EEFLs.
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple parallel circuit branches and in some cases through parallel fluorescent lamps. Single transformers with multiple-leg magnetic cores are wound in specific manners that simplify current balancing. Conventional three-legged EE-type magnetic cores, with disclosed windings are used to balance current in circuits with three or more parallel branches, such as parallel connected Cold Cathode Fluorescent Lamps (CCFLs).
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple circuit loads and in some cases through fluorescent lamps. Multiple-leg magnetic cores are wound in specific manners to simplify current balancing. Conventional three- or more than three-legged EE- and EI-type magnetic cores, with disclosed windings are used to balance current in circuits with multiple branches, such as connected Cold Cathode Fluorescent Lamps (CCFLs).
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple parallel circuit branches and in some cases through parallel fluorescent lamps. Single transformers with multiple-leg magnetic cores are wound in specific manners that simplify current balancing. Conventional three-legged EE-type magnetic cores, with disclosed windings are used to balance current in circuits with three or more parallel branches, such as parallel connected Cold Cathode Fluorescent Lamps (CCFLs).
Abstract: The present disclosure introduces a simple method and apparatus for converting DC power to AC power, and, specifically, to single-ended inverter circuits for driving discharge lamps such as a Cold Cathode Fluorescent Lamp (CCFL) or an External Electrode Fluorescent Lamp (EEFL). Among other advantages, these circuits offer nearly symmetrical voltage waveform to drive discharge lamps when the duty cycle is close to 50%. They also eliminate the high current and high voltage resonant capacitor on the primary side, and reduce the voltage rating of a primary switch to twice the input voltage without the need for snubber circuits. The recommended inverters can be used to efficiently drive discharge lamps at low cost, particularly for applications with a narrow input voltage range. The lamp current can be regulated through the duty cycle modulation of the main switch.
Abstract: Methods and apparatus are disclosed for controlling switching regulators to automatically switch from a traditional pulse-width modulation (PWM) mode, when the load current is higher than a predetermined value, to a pulse-frequency modulation (PFM) mode, when the load current drops to a point lower than the predetermine value. Switching modes increases the efficiency of the regulator when the load current is low without provoking a large output voltage transient. In some embodiments, a single switching cycle regulates the output in the PFM mode, which reduces the switching losses and enhances the efficiency of the regulator.
Type:
Grant
Filed:
October 28, 2005
Date of Patent:
October 3, 2006
Assignee:
Monolithic Power Systems, Inc.
Inventors:
James H. Nguyen, Thomas T. Chiang, Christopher T. Falvey
Abstract: A Class D audio amplifier with output signals capable of being as high as the amplifier's supply voltage. The audio amplifier contains a comparator, a positive output stage, and a negative output stage. The output signal from the positive output stage and the output signal from the negative output stage have opposite polarities and are connected to the comparator's negative and positive input terminals respectively. The Class D audio amplifier has superior transient response, and in turn, provides good sound quality and low THD. The resulting variable switching frequencies also help to alleviate EMI problems.
Abstract: Methods and circuits are disclosed for converting DC power to AC power for driving discharge lamps such as cold cathode fluorescent lamps (CCFLs). Among other advantages, the lamp current and open lamp voltage can be regulated by a simple control scheme.
Abstract: Methods and apparatus are disclosed for suppressing circuit noise due to parasitic elements in switch mode power supplies. The presented embodiments use actively controlled damping devices such as controllable resistors, current sources, and tri-state power devices to achieve required damping and to minimize power loss.
Abstract: An amplifier circuit performs audio signal processing and other signal processing by using a noise reduction feedback network. The noise reduction feedback network turns on automatically when output signals are in or near voltage saturation state. The network provides feedback signals to the input terminals of the amplifier's control stage and modulates the control signals. It prevents audio frequency noise associated with “clipping”.
Abstract: The present disclosure introduces a simple method and apparatus for a Class-D amplification and Pulse Width Modulation (PWM) of an input signal, such as a voice signal. The proposed circuits do not require reference input signals such as triangular signals; rather, the combination of the circuits' self-oscillating device arrangements and the delay elements performs pulse width modulation at higher frequencies while producing less noise. Among other advantages, these circuits offer shorter response time, less distortion, better power supply ripple rejection, larger negative feedback, and simpler construction. The recommended Class-D amplifiers can be used with speakers and can have single-ended or differential input.
Abstract: The present invention introduces methods and circuits to amplify audio signals for driving speakers. An additional feedback circuit is added in an audio amplifier to couple the amplifier stage and output stage of the audio amplifier. The feedback circuit turned off as long as output voltages of the audio amplifier are not near saturation. The feedback circuit is turned on to reduce audible noises if output voltages of the audio amplifier are near saturation.
Abstract: The present disclosure introduces a simple method and apparatus for converting DC power to AC power for driving discharge lamps such as a cold cathode fluorescent lamp (CCFL), an external electrode fluorescent lamp (EEFL), or a flat fluorescent lamp (FFL). Among other advantages, the invention allows the proper protection under short circuit conditions for applications where the normal lamp current is greater than safe current limit.