Abstract: Two out-of-phase inverters are used for driving a backlight for large LCD panels. The lamp currents of each inverter are regulated to substantially the same level to ensure the same brightness in the lamps without any current balancing devices. The switching frequencies in both inverters are synchronized and maintained in an out-of-phase condition during operation.
Abstract: The present invention introduces methods and systems to amplify digital audio signals for driving speakers. First, digital audio signals are converted to PWM audio signals by a liner PWM modulator that is open-loop. Then, PWM audio signals are amplified by a Class D audio amplifier that has at least one feedback loop.
Abstract: The present disclosure introduces a simple method and apparatus for converting DC power to AC power for driving discharge lamps such as a cold cathode fluorescent lamp (CCFL), an external electrode fluorescent lamp (EEFL), or a flat fluorescent lamp (FFL). Among other advantages, the invention allows the proper protection under short circuit conditions for applications where the normal lamp current is greater than safe current limit.
Abstract: Control methods and apparatus are disclosed for operating a full-bridge inverter at resonant frequency mode, hybrid frequency mode, and fixed frequency mode. The operating frequency of the inverter equals to the user programmed frequency if the user programmed frequency is above the resonant tank frequency; and the operating frequency is synchronized with the resonant tank frequency if the user programmed frequency is below the resonant tank frequency.
Abstract: Embodiments of isolated gate driver circuits are disclosed for driving high- and low-side switching devices for half- and full-bridge power converter topology. Disclosed circuits provide sufficient dead-time, operate over a wide range of duty cycles, and require a single power supply (Vcc). Typical applications for such circuits include cold cathode fluorescent lamp (CCFL) inverters that are powered by a high voltage DC rail.
Abstract: A detector circuit monitors the phase relationship between the lamp voltage and the excitation voltage, and if one or more conditions are met, triggers the open lamp protection process in a discharge lamp system. The detection circuit can be incorporated into a lamp voltage feedback circuit and implemented on the integrated circuit level with less cost and circuit complexity.
Abstract: Methods and apparatus are disclosed for suppressing circuit noise due to parasitic elements in switch mode power supplies. The presented embodiments use actively controlled damping devices such as controllable resistors, current sources, and tri-state power devices to achieve required damping and to minimize power loss.
Abstract: A circuit comprises a detector circuit and a protection triggering circuit in a discharge lamp system. The detector circuit detects both open lamp and shorted lamp conditions and is coupled with detecting devices, such as sensing capacitors. A DC bias is added to the sensing capacitors so that capacitor voltages are always greater than zero volts. The output voltage of the detector circuit is coupled to the protection triggering circuit, which triggers an open lamp protection when open lamp condition occurs and a shorted lamp protection when shorted lamp condition occurs.
Abstract: The present invention introduces methods and circuits to provide a soft start for a switching regulator. A feedback voltage from output terminal is monitored and used to regulate the bias current of the regulator's error amplifier. The present invention also enables a smooth transition from the soft start to normal operation.
Abstract: Methods and apparatus are disclosed for converting DC power to AC and for driving multiple discharge lamps and, more particularly, Cold Cathode Fluorescent Lamps (CCFLs), External Electrode Fluorescent Lamps (EEFLs), and Flat Fluorescent Lamps (FFLs). Disclosed methods, among other advantages, allow accurate current sharing among the lamps, minimization of the total number of power switches, and, in general, simplification of the complexity of the control system.
Abstract: Methods and apparatus are disclosed for efficient switching regulators that adapt automatically to, and operate with, input voltages that are above, below, or equal to the output voltage. The disclosed switching regulators demonstrate advantages of both buck and boost converters at high efficiency.
Abstract: The present invention discloses a DC/AC converter in the backlight power supply system using cold cathode fluorescent lamp (CCFL). The DC/AC converter comprises a front end DC/DC converter, a full-bridge or half bridge inverter, and a piezoelectric transformer. Even with a wide range of input voltages, the front end DC/DC converter produces a predetermined DC voltage or a DC voltage with a predetermined small range and the cascaded inverter operates with a switching frequency close to the resonant frequency of the piezoelectric transformer, which helps the backlight power supply system achieve high efficiency.
Type:
Application
Filed:
October 17, 2006
Publication date:
April 19, 2007
Applicant:
Monolithic Power System, Inc.
Inventors:
Junming Zhang, Xiaopeng Dong, Yuancheng Ren, Wei Chen, Eric Yang
Abstract: A circuit provides a voltage reference using very low power. It can also be used as a shut regulator for a quiescent current as low as 1.5 ?A. It includes a transconductance amplifier, a gain stage, and a power transistor. One embodiment of this invention utilizes a work function difference between p+ gate and n+ gate to generate a predetermined reference voltage. In another embodiment of this invention, the predetermined reference voltage can be pre-adjusted using gate materials with different work functions.
Abstract: Methods and apparatus are disclosed for protecting circuits from damages caused by elevated temperatures. Presented embodiments illustrate IC thermal protection circuits that shut down power delivery circuits when the circuit temperature reaches a predefined upper threshold and restart the circuit when the circuit cools down to a predefined lower threshold. Other embodiments provide soft shutdown and soft restart, where not only the temperature range between the shutdown and the restart is predetermined, but also the time between the start of a shutdown process and the complete shutdown is controllable.
Abstract: Embodiments of isolated gate driver circuits are disclosed for driving high- and low-side switching devices for half- and full-bridge power converter topology. Disclosed circuits provide sufficient dead-time, operate over a wide range of duty cycles, and require a single power supply (Vcc). Typical applications for such circuits include cold cathode fluorescent lamp (CCFL) inverters that are powered by a high voltage DC rail.
Abstract: A method for automatically adjusting the intensity of a lighting element based on feedback from internal and external sources of light is disclosed herein. A photosensitive element senses ambient light and transmits an electrical signal proportional to the intensity of the ambient light to a driver. The driver automatically adjusts the intensity of the lighting element based on this feedback to provide optimal conditions for the application. In addition, the lighting element transmits an electrical signal proportional to the intensity of the light from the lighting element to a driver. The driver further adjusts the intensity of the lighting element based on this feedback to provide optimal conditions for the application.
Type:
Application
Filed:
July 14, 2006
Publication date:
January 25, 2007
Applicant:
Monolithic Power Systems, Inc.
Inventors:
James Moyer, Michael Hsing, Jean-Francois Daviet
Abstract: A technique for driving one or more EEFLs, having first and second ends, in a bank of EEFLs involves driving the EEFLs at both the first and second ends. In a non-limiting embodiment a device constructed according to the technique includes a bank of EEFLs connected in parallel. The device further includes a first transformer, wherein a secondary winding of the first transformer is coupled to the first end of the bank of EEFLs. The device further includes a second transformer, wherein a secondary winding of the second transformer is coupled to the second end of the bank of EEFLs.
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple circuit loads and in some cases through fluorescent lamps. Multiple-leg magnetic cores are wound in specific manners to simplify current balancing. Conventional three- or more than three-legged EE- and EI-type magnetic cores, with disclosed windings are used to balance current in circuits with multiple branches, such as connected Cold Cathode Fluorescent Lamps (CCFLs).
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple parallel circuit branches and in some cases through parallel fluorescent lamps. Single transformers with multiple-leg magnetic cores are wound in specific manners that simplify current balancing. Conventional three-legged EE-type magnetic cores, with disclosed windings are used to balance current in circuits with three or more parallel branches, such as parallel connected Cold Cathode Fluorescent Lamps (CCFLs).
Abstract: Methods and apparatus are disclosed for balancing currents passing through multiple parallel circuit branches and in some cases through parallel fluorescent lamps. Single transformers with multiple-leg magnetic cores are wound in specific manners that simplify current balancing. Conventional three-legged EE-type magnetic cores, with disclosed windings are used to balance current in circuits with three or more parallel branches, such as parallel connected Cold Cathode Fluorescent Lamps (CCFLs).