Patents Assigned to Moxtek
  • Patent number: 11555953
    Abstract: An optical device can comprise wires 12 on a face of a substrate 11, with channel(s) 13 between adjacent wires 12. Each wire 12 can include embedded organic moieties. Each wire 12 can include multiple ribs 31. Part or all of the wire 12, the substrate 11, or both can have a high refractive index n and a low extinction coefficient k. The optical device can have reduced separation of layers of different materials during flexing and temperature changes. The optical device can be manufactured by a method designed for improved manufacturability.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: January 17, 2023
    Assignee: Moxtek, Inc.
    Inventors: Anubhav Diwan, Bradley R. Williams, R. Stewart Nielson
  • Patent number: 11550090
    Abstract: A polarizer can have high contrast. This high contrast polarizer can be useful in applications requiring minimal leakage of an undesired polarization through the polarizer. The high contrast polarizer can include a substrate sandwiched between a reflective polarizer and an absorptive polarizer. The high contrast polarizer can include a reflective polarizer sandwiched between a substrate and an absorptive polarizer. The high contrast polarizer can include an absorptive polarizer sandwiched between reflective polarizers.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: January 10, 2023
    Assignee: Moxtek, Inc.
    Inventor: Liang Gao
  • Patent number: 11545333
    Abstract: A shield around an x-ray tube, a voltage multiplier, or both can improve the manufacturing process by allowing testing earlier in the process and by providing a holder for liquid potting material. The shield can also improve voltage standoff. A shielded x-ray tube can be electrically coupled to a shielded power supply.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: January 3, 2023
    Assignee: Moxtek, Inc.
    Inventors: David S. Hoffman, Vincent F. Jones, Eric Miller
  • Patent number: 11545276
    Abstract: An x-ray window can include a boron-film 12 and an aluminum-film 52 spanning an aperture 15 of a support-frame 11. The boron-film 12 and the aluminum-film 52 can be the only films, or the primary films, spanning the aperture. The boron-film 12 can include boron and hydrogen. An annular-film 32 can adjoin the support-frame 11, on an opposite side of the support-frame 11 from the boron-film 12. The annular-film 32 can include boron and hydrogen. The annular-film 32 can have the same material composition as, and can be similar in thickness with, the boron-film 12.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: January 3, 2023
    Assignee: Moxtek, Inc.
    Inventors: Jared Sommer, Jonathan Abbott
  • Patent number: 11513272
    Abstract: A wire grid polarizer (WGP) can have a conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a silane conformal-coating with chemical formula (1), chemical formula (2), or combinations thereof: A method of applying a conformal-coating over a WGP can include exposing the WGP to Si(R1)d(R2)e(R3)g. In the above WGP and method, X can be a bond to the ribs; each R1 can be a hydrophobic group; each R3, if any, can be any chemical element or group; d can be 1, 2, or 3, e can be 1, 2, or 3, g can be 0, 1, or 2, and d+e+g=4; R2 can be a silane-reactive-group; and each R6 can be an alkyl group, an aryl group, or combinations thereof.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Moxtek, Inc.
    Inventors: Stew Nielson, Matt Linford, Anubhav Diwan, Matthew C. George
  • Patent number: 11513271
    Abstract: A reflective wire grid polarizer (WGP) can include an array of wires 12 on a face of a substrate 11, with channels 15 between adjacent wires 12. The wires 12 can have certain characteristics for WGP performance, such as index of refraction, alternating high/low index continuous thin films, thickness of layer(s), duty cycle, reflective rib shape, a curved side of transparent ribs 21 or 32, aspect ratio, or combinations thereof.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: November 29, 2022
    Assignee: Moxtek, Inc.
    Inventors: Daniel Bacon-Brown, Michael Black, R. Stewart Nielson, Bradley R. Williams, Benjamin Downard, Jeffrey H. Rice, Jim Pierce
  • Patent number: 11493775
    Abstract: Polarizing optical devices described herein, and polarizing optical devices resulting from methods described herein, can be small and can have high heat tolerance. Wires of wire grid polarizers can be attached directly to prisms of the polarizing optical devices, allowing for small size. Multiple polarizing optical devices can be attached by adhesive-free bonding techniques, allowing high heat tolerance.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 8, 2022
    Assignee: Moxtek, Inc.
    Inventors: Liang Gao, Shaun Ogden
  • Patent number: 11435512
    Abstract: Each wire of a wire grid polarizer (WGP) can include the following layers moving outwards from the substrate: a high-index-layer, a low-index-layer, and a reflective-layer. Each wire can have a distal-end, farthest from the substrate, with a convex shape. These layers and the convex shape can be combined for a more stable and improved Rs.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: September 6, 2022
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Bradley R. Williams
  • Patent number: 11435513
    Abstract: A wire grid polarizer (WGP) can include an array of support-ribs on a substrate. Sides of the support-ribs can be inclined to one side. A wire can be applied on an upper-side and distal end of each support-rib, each wire being separate from wires on adjacent support-ribs. The WGP can be made with reduced or no etching.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: September 6, 2022
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Bradley R. Williams, Bob West
  • Patent number: 11398573
    Abstract: An x-ray detector can be small and have efficient cooling. In one embodiment, the x-ray detector can comprise a thermoelectric cooler (TEC) with upper electrical connections, a support, a cap, and a silicon drift detector (SDD). A planar side of the support can be directly affixed to upper electrical connections of the TEC. The support can have a non-planar side, opposite of the planar side, with a raised structure. A bottom face of the cap can be affixed to the raised structure, forming a cavity between the cap and the non-planar side of the support. The SDD can be affixed to a top face of the cap. In another embodiment, the non-planar side of the support can face the TEC. In another embodiment, a PIN photodiode can be directly affixed to a plate and the plate directly affixed to upper electrical connections of the TEC.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: July 26, 2022
    Assignee: Moxtek, Inc
    Inventors: Jason Maynard, Shawn S. Chin, Jonathan Barron, David S. Hoffman
  • Patent number: 11361933
    Abstract: An x-ray window can include a thin film that comprises boron. The thin film can be relatively thin, such as for example ?200 nm. This x-ray window can be strong; can have high x-ray transmissivity; can be impervious to gas, visible light, and infrared light; can be easy of manufacture; can be made of materials with low atomic numbers, or combinations thereof. The thin film can include an aluminum layer. A support structure can provide additional support to the thin film. The support structure can include a support frame encircling an aperture and support ribs extending across the aperture with gaps between the support ribs. The support structure can also include boron ribs aligned with the support ribs.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: June 14, 2022
    Assignee: Moxtek, Inc.
    Inventors: Jared Sommer, Jonathan Abbott
  • Patent number: 11295924
    Abstract: An x-ray window can include an adhesive layer sandwiched between and providing a hermetic seal between a thin film and a housing. The adhesive layer can include liquid crystal polymer. The liquid crystal polymer can be opaque, gas-tight, made of low atomic number elements, able to withstand high temperature, low outgassing, low leakage, able to relieve stress in the x-ray window thin film, capable of bonding to many different materials, or combinations thereof.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: April 5, 2022
    Assignee: Moxtek, Inc.
    Inventors: Jared Sommer, Jonathan Abbott
  • Patent number: 11249234
    Abstract: It would be advantageous to improve polarizer high temperature resistance, corrosion resistance, oxidation resistance, optical properties, and etchability. Composite polarizer materials can be used to achieve this. A polarizer can comprise polarization structures configured for polarization of light. The polarization structures can include a reflective rib, the reflective rib being a composite of two different elements. The polarization structures can include an absorptive rib, the absorptive rib being a composite of two different elements. The polarizer can include a transparent layer, the transparent layer being a composite of two different elements.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: February 15, 2022
    Assignee: Moxtek, Inc.
    Inventor: R. Stewart Nielson
  • Patent number: 11195687
    Abstract: A shield around an x-ray tube, a voltage multiplier, or both can improve the manufacturing process by allowing testing earlier in the process and by providing a holder for liquid potting material. The shield can also improve voltage standoff. A shielded x-ray tube can be electrically coupled to a shielded power supply.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: December 7, 2021
    Assignee: Moxtek, Inc.
    Inventors: David S. Hoffman, Vincent F. Jones, Eric Miller
  • Patent number: 11152184
    Abstract: X-ray transparent insulation can be sandwiched between an x-ray window and a ground plate. The x-ray transparent insulation can include aluminum nitride, boron nitride, or polyetherimide. The x-ray transparent insulation can include a curved side. The x-ray transparent insulation can be transparent to x-rays and resistant to x-ray damage, and can have high thermal conductivity. An x-ray window can have high thermal conductivity, high electrical conductivity, high melting point, low cost, and matched coefficient of thermal conductivity with the anode. The x-ray window can be made of tungsten. For consistent x-ray spot size and location, a focusing plate and a filament can be attached to a cathode with an open channel of the focusing plate aligned with a longitudinal dimension of the filament. Tabs of the focusing plate bordering the open channel can be bent to align with a location of the filament.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: October 19, 2021
    Assignee: Moxtek, Inc.
    Inventors: Todd S. Parker, Eric Miller
  • Patent number: 11150391
    Abstract: A wire grid polarizer (WGP) can include a flexible substrate. The flexible substrate might be desirable for WGP flexibility or to aid in further processing of the WGP. Wires of the WGP can include flexible ribs to minimize or avoid defects such as cracks in the WGP. An etch stop layer in the wires can allow formation of the flexible ribs without delamination of a reflective portion of the wires. The WGP embodiments herein can have improved flexibility, stretchability, compressibility, or combinations thereof with reduced cracking, collapse, and delamination of wires or ribs.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: October 19, 2021
    Assignee: Moxtek, Inc.
    Inventor: Matthew C. George
  • Patent number: 11081311
    Abstract: An x-ray source can include an x-ray tube, and a heat sink for removal of heat from the x-ray tube. The heat sink can be thermally coupled to the anode and can extend away from the anode along a heat sink longitudinal axis. The heat sink can have a base and a fin extending from the base. The base can have a greater thickness nearer the anode, and a reduced thickness along the heat sink longitudinal axis to a smaller thickness farther from the anode.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 3, 2021
    Assignee: Moxtek, Inc.
    Inventor: Todd S. Parker
  • Patent number: 11079528
    Abstract: A method of making a polarizer can include applying a liquid with solid inorganic nanoparticles dispersed throughout a continuous phase, then forming this into a different phase including a solid, interconnecting network of the inorganic nanoparticles. This method can improve manufacturability and reducing manufacturing cost. This method can be used to provide an antireflective coating, to provide a protective coating on polarization structures, to provide thin films for optical properties, or to form the polarization structures themselves.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 3, 2021
    Assignee: Moxtek, Inc.
    Inventors: Bradley R. Williams, R. Stewart Nielson, Anubhav Diwan, Eric Gardner, Shaun Patrick Ogden, Bob West
  • Patent number: 11002899
    Abstract: A method for making a wire grid polarizer (WGP) can provide WGPs with high temperature resistance, robust wires, oxidation resistance, and corrosion protection. In one embodiment, the method can comprise: (a) providing an array of wires on a bottom protection layer; (b) applying a top protection layer on the wires, spanning channels between wires; then (c) applying an upper barrier-layer on the top protection layer and into the channels through permeable junctions in the top protection layer. In a variation of this embodiment, the method can further comprise applying a lower barrier-layer before applying the top protection layer. In another variation, the bottom protection layer and the top protection layer can include aluminum oxide. In another embodiment, the method can comprise applying on the WGP an amino phosphonate then a hydrophobic chemical.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 11, 2021
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Matthew C. George, Shaun Ogden, Brian Bowers
  • Patent number: 10991540
    Abstract: An x-ray window can include an adhesive layer sandwiched between and providing a hermetic seal between a thin film and a housing. The adhesive layer can include liquid crystal polymer. The liquid crystal polymer can be opaque, gas-tight, made of low atomic number elements, able to withstand high temperature, low outgassing, low leakage, able to relieve stress in the x-ray window thin film, capable of bonding to many different materials, or combinations thereof.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 27, 2021
    Assignee: Moxtek, Inc.
    Inventors: Jared Sommer, Jonathan Abbott