Patents Assigned to MTU Aero Engines GmbH
  • Patent number: 8831911
    Abstract: A device and method for monitoring a gas turbine is disclosed. The device includes a receiver for receiving condition values of the gas turbine and an analytical device. The analytical device is designed to determine condition information from the condition values of the gas turbine using Bayes' Prediction.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 9, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Holger Lipowsky, Stephan Staudacher
  • Patent number: 8821122
    Abstract: An integrally bladed rotor disk (20) for a turbine, including rotor blades (40), which are joined in a substance-to-substance bond to a disk element (30), and a sealing device (60) for preventing or reducing the extent to which cooling air is able to flow from a high-pressure side (12) of the rotor disk (20) through openings (24) on the rotor disk (20) to a low-pressure side (14) of the rotor disk (20).
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 2, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Hans-Peter Borufka, Frank Stiehler, Hernan Victor Arrieta, Patrick Prokopczuk, Joachim Lorenz
  • Patent number: 8814529
    Abstract: A blade construction for a turbo device, preferably a blade array of a low-pressure turbine, is disclosed. On the inlet-side profile surface of the blade a vortex generator is arranged downstream from the speed maximum. The vortex generator is formed by a surface undulation with at least one wave, the wave tail of which runs in the form of a wave trough and/or a wave peak in the blade vertical direction.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: August 26, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Fiala, Jochen Gier
  • Patent number: 8813327
    Abstract: A method for machining a workpiece is disclosed. The method includes fixing a workpiece on a workpiece carrier using an engaging and fixing element by adhering a first mold surface of the engaging and fixing element to an adhesive surface of the workpiece and by adhering a second mold surface of the engaging and fixing element to a contact and adhesive surface of the workpiece carrier. The method further includes machining the workpiece and releasing the first mold surface of the engaging and fixing element from the adhesive surface of the workpiece and releasing the second mold surface of the engaging and fixing element from the contact and adhesive surface of the workpiece carrier.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: August 26, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Martin Fessler-Knobel, Roland Huttner, Robert Axtner
  • Patent number: 8807282
    Abstract: A lubricant system is disclosed, in particular for the supply of lubricant to a user in a gas turbine aircraft engine. The system includes a lubricant reservoir, where in the lubricant reservoir a lubricant can be set in rotation by at least one rotatable drum that is integrated into the lubricant reservoir or by at least one rotatable blade that is integrated into the lubricant reservoir, such that the lubricant, as a result of centrifugal force, comes into contact against a rotationally symmetrical wall of the lubricant reservoir, and from there can be transported toward a user. A drive system is included for the or each rotatable drum or the or each rotatable blade of the lubricant reservoir. At least one rotating lubricant separator is provided for the venting of the lubricant. The or each lubricant separator can be driven by the drive system of the or of each rotatable drum and/or of the or of each rotatable blade of the lubricant reservoir.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: August 19, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Helmut Streifinger
  • Patent number: 8778255
    Abstract: A component, in particular an engine component, which has at least one mark with a predetermined three-dimensional shape for determining a stress in the component and where the component is constructed by a generative manufacturing method, is disclosed.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: July 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Joachim Bamberg, Roland Hessert
  • Patent number: 8771786
    Abstract: A method is disclosed for the repair of a component of a turbomachine, in particular a rotor of an aircraft gas turbine, with blades taken up in at least one groove and with at least one support region for limiting a blade tilt angle, whereby at least one segment, which has been subjected to wear, of the support region of the component is removed, and a coating that can be introduced in the unit on at least one supporting surface of at least one blade is formed on the component for limiting the blade tilt angle. In addition, a component of a turbomachine, in particular a rotor of an aircraft gas turbine, with at least one such repair site is disclosed.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: July 8, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Michael Raiche, Christian Heinzelmaier
  • Patent number: 8764390
    Abstract: The invention relates to a device (1) and to a method associated with an assembly mechanism for a rotor system of an axial turbo engine having a central tension anchor, as is particularly known from engine technology. To this end, the invention provides a tensioning tool that pre-tensions or biases the tension anchor prior to and during the insertion of the anchor into the compound rotor assembly. After inserting the biased tension anchor in the compound rotor assembly, the tension anchor is relaxed, whereby the anchor exercises a compressive force on the compound rotor assembly. According to a preferred embodiment, the compound rotor assembly is also biased (compressed) and relaxed after assembling the tension anchor, so that a desired nominal bias Sigmanominal can be particularly easily achieved. The use of a shaft locking nut is no longer necessary in the device according to the invention, thus avoiding the difficulties that are associated with the use of this nut, such as complexity and safety problems.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: July 1, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Werner Humhauser
  • Patent number: 8753070
    Abstract: A device for redirecting a leakage current flowing between a stator and a rotor is disclosed. The device includes a sealing element for interrupting the leakage current, an outlet opening disposed on the rotor, and a guide which is configured to direct the leakage current past the sealing element to the outlet opening.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 17, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Sergio Elorza Gomez
  • Publication number: 20140154085
    Abstract: A gas turbine, in particular an aircraft engine, having a housing in which at least one guide blade (12) is situated, the guide blade (12) including at least one shroud configuration (21) having a radially outer shroud (16) and having a shroud holding device (23) with the aid of which the shroud (16) is secured on the housing, as well as including a turbine blade (18) extending radially inward from the shroud configuration (21). The shroud holding device (23) or parts thereof include(s) at least one air passage channel (28), which permits a flow passage through the shroud holding device (23). The invention also relates to a guide blade (12) for placement on a housing of a gas turbine as well as a method for manufacturing such a guide blade (12).
    Type: Application
    Filed: March 11, 2013
    Publication date: June 5, 2014
    Applicant: MTU AERO ENGINES GMBH
    Inventor: MTU Aero Engines GmbH
  • Patent number: 8739851
    Abstract: A device (2) having at least one connecting element (24, 26) for fastening a component (4) to, respectively for detaching it from a component carrier (6) using adhesive bonds; a mechanical peeling device (8) being provided for breaking the adhesive bonds. Also a method for fastening a component (4) to, respectively for detaching it from a component carrier (6).
    Type: Grant
    Filed: October 30, 2010
    Date of Patent: June 3, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Martin Fessler-Knobel, Roland Huttner
  • Publication number: 20140147286
    Abstract: A rotor disk for a turbomachine, which is connectable to at least one rotor blade and/or a shaft of the turbomachine, having at least one borehole, which has an elliptical inlet opening having a first passage cross-sectional area and an elliptical outlet opening having a second passage cross-sectional area, so that the second passage cross-sectional area is smaller than the first passage cross-sectional area.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: MTU Aero Engines GmbH
    Inventors: Matthias SIEBEL, Heinz RAUSCHMAIR, Andreas HOELZEL
  • Publication number: 20140143991
    Abstract: A method for machining a robot-guided component with a tool which is fastened in an articulated manner to a tool holder is disclosed. The method includes detecting a deflection of the tool with respect to the tool holder from a desired position and changing a pose of a robot that is guiding the robot-guided component on a basis of the detected deflection.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 29, 2014
    Applicants: INSYS Industriesysteme AG, MTU Aero Engines GmbH
    Inventors: Joerg Windprechtinger, Daniel Hodel
  • Patent number: 8708638
    Abstract: An apparatus and method for active gap monitoring for a continuous flow machine, in particular an aircraft propulsion device, which has a rotor and a housing which surrounds the rotor forming a rotor gap, is disclosed. The apparatus having a cooling channel which is arranged on the external circumference of the rotor housing and is supplied with cooling air from a plenum. The cross section of the cooling channel decreases from the plenum in the circumferential direction. This ensures homogenous cooling and reduces the weight of the apparatus.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 29, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Stefan Morgenstern, Rudolf Stanka
  • Patent number: 8708682
    Abstract: A method for repairing gas turbine components, in particular gas turbine blades, including at least the following steps: a) preparing a gas turbine component to be repaired; b) removing a damaged portion from the gas turbine component to be repaired, thereby forming a plane separation surface; c) placing the gas turbine component at least partly in a process chamber in such a way that the plane separation surface extends approximately horizontally within the process chamber; d) filling the process chamber with a metal powder that is bonding-compatible with the material of the gas turbine component to be repaired, namely up to the level of the separation surface; e) building up the removed portion on the separation surface by depositing metal powder in layers onto the separation surface and by fusing the metal powder, which has been deposited in layers onto the separation surface, to the separation surface.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: April 29, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Roland Huttner, Karl-Heinz Dusel, Erwin Bayer, Albin Platz
  • Patent number: 8697184
    Abstract: The present invention relates to a method for producing a coating on a gas turbine component, in which particles at least of parts of a material to be applied as coating are accelerated by means of kinetic gas dynamic cold spraying in a spray jet onto the surface (2) of the component (1) to be coated, wherein a reactive gas is fed into the spray jet (6), so that the reactive gas reacts at least partially with the particles of the coating material when the particles impinge on the surface (2) to be coated and/or wherein the deposited layer (9) is heated locally and/or over a large area and impacted with a reactive gas, as well as a gas turbine component produced in this way.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Manuel Hertter, Andreas Jakimov, Stefan Schneiderbanger
  • Patent number: 8691322
    Abstract: A method for measuring the thickness of a coating on a component section of a rotating component, wherein a heat expansion of the component section is determined by detecting a component core temperature and an actual coating thickness is produced, a device for conducting a method of this type having a temperature detecting system and having an evaluating device, as well as a production process and a coating system, are disclosed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 8, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Jochen Zierhut, Susanne Hogger
  • Patent number: 8694281
    Abstract: A method for determining the outlet cross-section of a component including one or more turbine blades, in particular of a turbine blade twin, of a gas turbine, in which at least one closed outlet cross-section is measured between the turbine blades, and/or respective open outlet cross-sections are measured on the side of the at least one turbine blade, using a measurement device, wherein in order to determine the corresponding outlet cross-section its respective bounding walls are traversed by the measurement device along a measurement line.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: April 8, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Anja Lange, Jens-Heiko Perleberg
  • Patent number: 8678742
    Abstract: The invention relates to a clearance control system for adjusting a running clearance (L) between a rotor (12) having rotor blades (10) of a turbomachine (14), especially a gas turbine, and a casing (18) that surrounds at least sections thereof and comprises at least two segments (16a-d), the clearance control system having at least one adjusting device (20), which can be coupled to at least one segment (16a-d) of the casing (18), and by means of which the at least one segment (16a-d) can be moved radially in relation to a rotational axis (D) of the rotor (12) for adjusting the running clearance (L), wherein each segment (16a-d) of the casing (18) is coupled to at least three adjusting devices (20) of the clearance control system. The invention also relates to a turbomachine (14), especially a gas turbine, as well as to a method for adjusting a running clearance (L).
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: March 25, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Hermann Klingels
  • Patent number: 8676369
    Abstract: A method for monitoring a production process with regard to quality is disclosed. The method includes: a) breaking down the production process into a sequence of individual steps, defined by a sequence of control commands for a production program for carrying out the production process on a machine tool; b) generating at least one signal template per individual step of the production process from the control commands for the individual steps, each signal template corresponding to a theoretical signal curve for a parameter which may be measured upon executing the production process; c) measurement of a signal curve for at least one parameter per individual step during the execution; and d) comparison of the or each measured signal curve with the respective arithmetically generated signal template, wherein a qualitatively poor production process is determined if the measured signal curve deviates from the signal template by more than a given tolerance.
    Type: Grant
    Filed: August 4, 2007
    Date of Patent: March 18, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Martin Eckstein, Guenter Breitkopf