Abstract: The invention relates to a blade (2) of a turbomachine, in particular a rotor blade of a gas turbine, which has a variable transition radius (Rv1) in the vicinity of at least one platform overhang (16), and to a turbomachine having at least one such blade (2).
Abstract: A blade group arrangement for a turbomachine in order to form a blade-row group, whereby a front blade and a rear blade each form an overlapping area that has a contraction ratio of at least 1.2, and it also relates to a turbomachine having such a contraction ratio between a front blade and a rear blade.
Type:
Grant
Filed:
February 6, 2013
Date of Patent:
October 18, 2016
Assignee:
MTU Aero Engines GmbH
Inventors:
Sergio Elorza Gomez, Alexander Hergt, Ulrich Siller, Tim Schneider
Abstract: A blade cascade for a continuous-flow machine having a non-axisymmetrical side wall contour, whereby the side wall contour has at least one pressure-side elevation and one suction-side depression, whose highest section and lowest section are located over an area 30% to 60% of an extension of the blades in the axial direction, and the axial positions of the outermost sections differ from each other at the maximum by 10% in the axial direction.
Abstract: A securing device (20) for axially securing a blade root (12) of a blade in a groove (11) of a turbine engine. The outer contour (24) of the securing device (20) that faces a groove wall, in particular a groove base (33), is curved at least in some regions, the outer contour (24) having three different radii (R1, R2, R3) in some regions.
Type:
Grant
Filed:
November 11, 2011
Date of Patent:
October 18, 2016
Assignee:
MTU Aero Engines GmbH
Inventors:
Rudolf Stanka, Manfred Dopfer, Martin Pernleitner, Wilfried Schuette
Abstract: The turbomachine includes a mid turbine vane frame, with an annular compartment formed between the mid turbine vane frame and a low-pressure turbine casing being sealed by means of at least two ring seals, wherein one ring seal is in contact with the mid turbine vane frame and the other ring seal is in contact with the low-pressure turbine casing and a radial annular overlap is thereby created with the first-mentioned ring seal.
Abstract: Proposed is a method for monitoring a passive pressure limiting valve (11) via which fuel is discharged from the rail (6) of a common rail system into the fuel tank (2), in which method, upon the detection of a defective rail pressure sensor (9), a switch is made from a rail pressure regulation mode into an emergency mode, wherein in the emergency mode, the rail pressure is successively increased until the pressure limiting valve (11) reacts, in which method, in the emergency mode, the pressure limiting valve (11) is set as open when the starting phase of the internal combustion engine has additionally been detected as having ended, and in which method, in addition, the opening duration of the pressure limiting valve (11) is monitored.
Abstract: A blade cascade for a continuous-flow machine having a non-axisymmetrical side wall contour, whereby the side wall contour has at least one suction-side depression that, in the circumferential direction, is at a distance from a suction-side wall, and having a section located upstream from the leading edges and a section located downstream from the leading edges, it has a pressure-side elevation that makes a transition to a pressure-side wall and that is located in a front blade area, and it has a pressure-side depression that is located upstream from the pressure-side elevation, and also discloses a continuous-flow machine having such a blade cascade.
Abstract: A turbomachine is disclosed having at least one blade row group, which is situated in a main flow path and has at least two adjacent blade rows, viewed in the main flow direction, each blade row having a plurality of blades, the rear edges of the blades of the upstream blade row and the front edges of the blades of the downstream blade row in the peripheral direction being situated at an edge distance which varies starting from a main flow path center in the direction of at least one main flow limitation, the periphery-side edge distance increasing or decreasing on both sides.
Abstract: A method for producing a component, particularly a component of a turbomachine, is disclosed. In an embodiment, the method includes the following process steps: a) producing a blank of a component by an additive production process or deposition of at least a first component element on a second component element by at least one additive production process for producing a blank of a component; b) setting a predefined roughness and/or quality of at least one section of a surface of the blank by vibratory grinding; and c) non-destructing testing of at least the section of the surface of the blank having a predefined roughness and/or quality by a penetration test, specifically a fluorescent penetrant test or dye penetrant test. A use of the method as well as components that are produced using the method are also disclosed.
Abstract: Proposed is a method for controlling and regulating an internal combustion engine (1), in which the rail pressure (pCR) is controlled via a suction throttle (4) on the low pressure side as a first pressure-adjusting element in a rail pressure control loop. The invention is characterized in that a rail pressure disturbance variable (VDRV) is generated in order to influence the rail pressure (pCR) via a pressure control valve (12) on the high pressure side as a second pressure-adjusting element, by means of which fuel is redirected in a controlled manner from the rail (6) into a fuel tank (2), the rail pressure disturbance variable (VDRV) being calculated using a corrected target volume flow (Vk(SL)) of the pressure control valve (12).
Abstract: In a connection box for direct connection to a charging fluid duct of a charging fluid supply designed for intermixing a charge air and an exhaust gas to form a charging fluid, comprising a housing with a charge air connecting space including at least a connection for a charge air guide arrangement, and at least one mixing channel in communication with the charge air connecting space via a connection for supplying charge air to the mixing channel and the mixing channel including a supply side exhaust gas connection for an exhaust gas recirculation and a charging fluid-side mixing channel connection for the charging fluid duct, the connection is arranged at a first front side of the housing, and the mixing channel extends along a longitudinal side of the housing from the first front side to a second front side of the housing opposite the first front side.
Type:
Grant
Filed:
April 28, 2012
Date of Patent:
September 13, 2016
Assignee:
MTU FRIEDRICHSHAFEN GMBH
Inventors:
Hermann Baumann, Dominik Seiderer, Walter Gauss
Abstract: A blade row for a turbomachine, in particular a gas turbine, is disclosed. The blade row has a number of first blade arrangements each having at least one first blade and a first shroud with a first extension in the circumferential and/or axial direction and at least a number of additional blade arrangements each having at least one additional blade and one additional shroud with an additional extension in the same direction, which is different from the first extension.
Abstract: The exemplary illustrations generally include a method for controlling and regulating an internal combustion engine-generator system 1000 with a plurality of internal combustion engine-generator units 400 generating electric power which can be connected to a distribution grid and load consumers 200 consuming electric power, with a unit 400 comprising an internal combustion engine 401, 402, 404-408 with variable engine speeds and a generator 421-428, characterized in the steps: determining a given operating state Z* of the internal combustion engine 401, 402, 404-408 of at least one internal combustion engine-generator unit 400; deducting a range of operating states ZB* describing an electric load override Ladm depending on the given operating state Z* for the internal combustion engine of at least one internal combustion engine-generator unit 400, with the determination of the given operating state Z* and the deduction of the range of operating range ZB* occurring based on the calculation model 504 for the in
Type:
Grant
Filed:
May 15, 2012
Date of Patent:
September 13, 2016
Assignee:
MTU FRIEDRICHSHAFEN GMBH
Inventors:
Gerhard Filip, Claus-Oliver Schmalzing, Hans-Juergen Thomas, Tobias Kohl
Abstract: Disclosed is a device for preserving fluid systems, for example of a fuel system and an oil system of a turbine engine, with at least one drive for driving at least one fuel pump and at least one oil pump, wherein a valve arrangement is provided, which makes transfer-pumping a fluid between the fluid systems possible, an engine having such a device as well as a method for triggering such a device or for preserving fluid systems.
Abstract: The invention relates to a method for determining a transition point and/or for determining wall shear stresses on surfaces (1) around which surfaces a flow circulates by means of thermography, wherein the method comprises the following steps: providing a surface with a heat insulation layer (3) on the surface (1) around which a flow is to circulate, circulating a flow around the surface (1) around which a flow is to circulate, heating the surface (1) around which a flow circulates, contactless measuring of the emitted flow intensity of the surface (1) around which a flow circulates by means of a camera system (7), determining at least one temperature decay coefficient on the surface (1) around which a flow circulates and ascertaining the transition point and/or the wall shear stresses on the surface (1) around which a flow circulates.
Type:
Application
Filed:
June 10, 2014
Publication date:
September 8, 2016
Applicant:
MTU Aero Engines AG
Inventors:
Martin Stadlbauer, Jurgen Grundmayer, Felix Von Plehwe
Abstract: A sealing arrangement (100) in an axial turbomachine between, on the one hand, a rotor (1) and, on the other hand, a stator (3) and/or a housing, including a support device (7, 7?) and a sealing element, whereby the support device (7, 7?) extends essentially in the radial direction (r). In the axial direction (u) of the turbomachine, the support device (7, 7?) has an axial contour that effectuates a stiffening effect for the support device (7, 7?).
Abstract: A blade for a blade row of a turbomachine having wired sections, in particular a blade of a compressor rotor blade, as well as a method for wiring sections of such a blade, is disclosed. Sections of a blade are wired in such a way that a first central component of a second section is selected according to at least one central component of a first section.
Type:
Grant
Filed:
January 29, 2011
Date of Patent:
September 6, 2016
Assignee:
MTU Aero Engines GmbH
Inventors:
Sergio Elorza Gomez, Peter Eibelshaeuser
Abstract: The invention relates to an anti-wear coating, specifically for components which are subject to erosion under mechanical loading, in particular for gas turbine components, said coating comprising at least two different individual layers which preferably alternate with one another multiply and are applied to a surface of a component which is to be coated. The individual layers comprise a ceramic main layer (45, 46, 47, 48) and a quasi-ductile, non-metallic intermediate layer (41, 42, 43, 44).
Type:
Grant
Filed:
October 25, 2011
Date of Patent:
August 30, 2016
Assignee:
MTU AERO ENGINES AG
Inventors:
Thomas Uihlein, Wolfgang Eichmann, Falko Heutling, Annegret Brendel
Abstract: The present invention relates to a method for reducing the particle emissions of an internal combustion engine over its service life. The number of cylinders of the internal combustion engine in which post-injection is carried out is incrementally increased during the service life of the internal combustion engine. The increase in the number of cylinders receiving a post-injection may depend upon at least one parameter, which may be a running time, a distance performance, a particle concentration in exhaust gas, a load profile, or other parameter. The individual cylinders receiving post-injection may be changed to distribute wear.
Type:
Grant
Filed:
June 19, 2015
Date of Patent:
August 23, 2016
Assignee:
MTU Friedrichshafen GmbH
Inventors:
Michael Prothmann, Johannes Baldauf, Markus Fleckhammer
Abstract: An axially split inner ring for a fluid flow machine is disclosed. The inner ring is constructed for connecting to guide vanes and includes at least a first ring segment arranged upstream and a second ring segment arranged downstream. The second ring segment has a first sealing segment, where at least one section of the second ring segment is arranged in a radially inward manner relative to the first ring segment. A guide vane ring of a fluid flow machine and an aircraft engine are also disclosed.