Patents Assigned to MTU
  • Patent number: 9302351
    Abstract: The invention relates to a method for joining two components (10, 12) made of a metal material, which are connected on two mutually associated joining surfaces (14, 16) by means of a joined connection, wherein at least one of the components (10) is strengthened in at least a partial region of the joining surface (14) thereof prior to joining. The invention further relates to a joined connection of two components (10, 12) made of a metal material.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: April 5, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Joachim Bamberg, Roland Hessert, Wilhelm Satzger, Thomas Mack, Alexander Gindorf, Martina Mack, Legal Representative
  • Patent number: 9303513
    Abstract: A turbomachine including at least one blade-row group that is arranged in the main flow path and at least two rows of blades that are adjacent to each other in the main flow direction, each row having a plurality of blades, whereby the trailing edges of the blades of the upstream row of blades and the leading edges of the blades of the downstream row of blades are arranged at an axial edge distance that decreases from the center of the main flow path in the direction of at least one main flow limiter.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: April 5, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Sergio Elorza Gomez, Tim Schneider
  • Patent number: 9297391
    Abstract: A flow device having a cooling-air injection system for injecting cooling air into cavities (20, 24) between sealing elements (14a, 14b) or sealing bodies (16a, 16b), respectively, on the side of the guide vanes and on the side of the rotor is disclosed.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 29, 2016
    Assignee: MTU AERO ENGINES GmbH
    Inventors: Peter Klaus Rued, David Koch, Werner Humhauser
  • Publication number: 20160084210
    Abstract: In a quantity limiting valve for a fuel injection system of an internal combustion engine including a cylinder with an inflow region and an outflow region separated by a piston axially movably disposed in the cylinder and a flow limiting fluid flow path extending along the piston between the inflow and outflow regions wherein the piston is biased with its front surface into contact with a stop element, the contact area between the front surface and the stop surface includes between the piston and the stop element a contact structure providing for an intermediate space which is in communication with the inflow region thereby to expose the front surface of the piston to the pressure of the fluid in the inflow region.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Robby GERBETH, Michael WALDER, Andreas MEHR, Markus STAUDT, Frank MLICKI
  • Publication number: 20160084191
    Abstract: A method and an assembly for controlling the pressure in a high-pressure region of an injection system in an internal combustion engine. A set high pressure is compared to an actual high pressure in order to determine a control deviation, the control deviation representing an input variable of a controller. A high pressure pump is controlled by a solenoid valve and the angle at which the delivery of fuel by the at least one high-pressure pump is to start is used as a manipulated variable of the high-pressure closed-loop control system.
    Type: Application
    Filed: May 23, 2014
    Publication date: March 24, 2016
    Applicant: MTU Friedrichshafen GMBH
    Inventor: Armin DÖLKER
  • Patent number: 9290254
    Abstract: In a method for controlling a ship propulsion system wherein, in a first operating mode, the position of a command signal generator within a guide range including a forward and a reverse section is interpreted by a system controller as a desired power output as well as a desired travel direction, a second operating mode is provided wherein the position of the command signal generator is ignored as power output command so that the position of the command signal generator forms only as directional control device and wherein in either mode of operation, the command signal generator is automatically returned to a neutral position when the command signal generator is released by an operator.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 22, 2016
    Assignee: MTU FRIEDRICHSHAFEN GmbH
    Inventor: Adelbert Kern
  • Publication number: 20160074969
    Abstract: A method of producing holes in a component, in particular of turbomachines, wherein each hole extends from a first, outer surface to a second, inner surface of the component and wherein the method has, for example, the following steps: (i) producing a 3D model of the actual geometry of the component, at least for the region of the holes; (ii) adapting each hole on the basis of the actual geometry of the component; and (iii) generating a production program for each individual hole. In this way, the process quality and with it the quality of the holes increases, because the offset of holes caused by component tolerances is avoided and the drilling funnels are formed according to specification. Furthermore, drilling defects on account of the offset of holes and/or cores can be avoided. Overlapping holes caused by component tolerances are likewise avoided.
    Type: Application
    Filed: February 26, 2015
    Publication date: March 17, 2016
    Applicant: MTU AERO ENGINES GMBH
    Inventor: Josef Kriegmair
  • Patent number: 9284848
    Abstract: A blade-disk unit for a turbine engine includes a disk and a plurality of blades which are integrally connected to the disk, a welding seam being disposed in the joining region between the blade and the disk, which welding seam is situated entirely either in the blade or in the disk.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 15, 2016
    Assignee: MTU AERO ENGINES GMBH
    Inventor: Karl-Hermann Richter
  • Publication number: 20160061116
    Abstract: A shaft seal system which is disposed axially between a first chamber and a second chamber is disclosed. The shaft seal system includes a shaft, a casing that surrounds the shaft, and a seal which is disposed axially closer to the second chamber where the first chamber has a fluid and the second chamber is to be protected from the fluid. In this arrangement, the seal includes a pressure booster.
    Type: Application
    Filed: September 2, 2015
    Publication date: March 3, 2016
    Applicant: MTU Aero Engines AG
    Inventors: Michael FLOUROS, Richard Scharl, Francois Cottier
  • Patent number: 9272379
    Abstract: A mounting device and method for mounting a component is disclosed. The mounting device includes a component carrier and an adapter. The adapter is insertable into a guide of the component carrier. The method uses the mounting device to mount a component on the mounting device.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 1, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Martin Fessler-Knobel, Roland Huttner
  • Patent number: 9273620
    Abstract: The invention relates to a method for regulating a gas engine (1) having a generator (5), wherein a regulator torque is calculated by means of a speed regulator from a speed regulator deviation, wherein a target volume flow is calculated at least as a function of the regulator torque, wherein a fuel volume is determined as a proportion of a fuel-air mixture as a function of the target volume flow, and wherein a target receiver pipe pressure is also calculated as a function of the target volume flow as a guide parameter for a receiver pipe pressure regulating circuit for regulating the mixture pressure (pRRA, pRRB) of a fuel-air mixture in the receiver pipe (12, 13) above the inlet valves of the gas engine (1). The invention is characterized in that a deviation of the regulator torque from a generator torque is calculated and the target receiver pipe pressure is corrected using the deviation.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: March 1, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Ludwig Kläser-Jenewein
  • Publication number: 20160053724
    Abstract: A gas internal combustion engine, having a gas mixer, an intake section and an engine with cylinders. A fuel mixture having a charging mixture is fed to the engine. The engine is operated in the gas mode with gas as the fuel in the charging mixture. By an input mixture portion, assigned to an earlier mixture state, of a gas/air mixture, an output mixture portion, assigned to a later mixture state, of the gas/air mixture is determined, The determination is carried out by an intake section model which serves as a basis of a computing model for the intake section. The output mixture portion of the gas/air mixture is determined an engine feed, the input mixture portion of the output mixture portion is determined over a number of intermediate states of the mixture portion in a number of assigned volumes of the intake section. The intake mixture portion of a gas/air mixture is determined at the gas mixer, and an air stream and/or gas stream is set at the gas mixer in accordance with the input mixture portion.
    Type: Application
    Filed: January 20, 2014
    Publication date: February 25, 2016
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Andreas FLOHR, Andreas GELLER
  • Patent number: 9267483
    Abstract: The disclosure relates to a method for operating a spark ignition gas engine, with fuel gas in the form of biogas by setting an ignition time (ZZP) of the spark ignition gas engine. The method comprises to following steps: mixing of air and fuel gas to form a combustible gas mixture in a mixing arrangement, feeding in and igniting the combustible gas mixture in the combustion chamber while setting an ignition time (ZZP) and burning the combustible gas mixture while discharging exhaust gas from the combustion chamber. The method further comprises the steps of: detection of an exhaust gas temperature (T_AG) of the exhaust gas, predefining at least one reactor position (LRV) of a component of the mixing arrangement, setting the ignition time (ZZP) of the spark ignition gas engine as a function of the exhaust gas temperature (T_AG) and the reactor position (LRV). The reactor position (LRV) is predefined as a manipulated variable by a mixture controller.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 23, 2016
    Assignee: MTU ONSITE ENERGY GMBH
    Inventors: Markus Diehl, Tobias Lindermayr
  • Patent number: 9260784
    Abstract: The present invention relates to a method for producing a component, in particular a blade for a gas turbine, wherein a main body (2) is provided, to which a running-in layer (6) is applied, which can be worn away at least partially during operation to form an accurately fitting surface (11), wherein the running-in layer is applied by kinetic cold-gas compacting, and a component, in particular a blade for a gas turbine, comprising a main body, to which a running-in layer is applied, which can be worn away at least partially during operation to form an accurately fitting surface, wherein the running-in layer is a porous layer made of a Ti alloy.
    Type: Grant
    Filed: July 31, 2010
    Date of Patent: February 16, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20160040713
    Abstract: A roller bearing, particularly a needle bearing, for arranging on a pivot pin of a variable guide vane of a turbomachine, is disclosed. The roller bearing includes at least one radially elastic needle which has two opposing end regions and at least one roller region arranged between the end regions and constructed in a cross-sectionally thickened manner. The end regions roll off at associated raceways of a bearing housing of the roller bearing and the roller region is arranged in the region of an associated groove of the bearing housing. A variable guide vane with at least one such roller bearing, a housing of a turbomachine with such a guide vane, as well as a turbomachine, is also disclosed.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 11, 2016
    Applicant: MTU Aero Engines AG
    Inventor: Alexander BOECK
  • Patent number: 9254530
    Abstract: A method for removing material from a component that is connected as an anode is disclosed. In an embodiment, an electrode that is connected as a cathode is guided to the component such that a gap is formed, an electrolyte is introduced into the gap, and a closed system is formed for the electrolyte by the formation of a duct. The electrolyte is continuously guided from an inlet opening to an outlet opening of the duct. Forming the duct, e.g., by guide elements that are mounted on the electrode, ensures that only those surface parts of the component to be machined from which material is to be removed enter in contact with the electrolyte while the other surface parts do not enter in contact with the electrolyte. Since the electrolyte is continuously guided across the surface, used electrolyte is continuously discharged along with residual matter while fresh electrolyte is delivered.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: February 9, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Erwin Bayer, Martin Bussmann, Albin Platz
  • Publication number: 20160032760
    Abstract: A housing for a gas turbine is disclosed. At least one wall element is housed on the housing so as to move, which limits a flow channel of the housing in the radial direction from a rotational axis of a rotor of the gas turbine toward the exterior. The housing includes at least one variably adjustable guide blade which extends through the wall element into the flow channel. The wall element can be moved between a sealing setting, in which the wall element makes contact at least in a partial area of a side of a blade leaf of the guide blade facing toward the wall element, and an open setting, in which the blade leaf and the wall element are spaced some distance apart from one another. A gas turbine as well as a process for operating a gas turbine is also disclosed.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Applicant: MTU Aero Engines AG
    Inventors: Alexander BOECK, Franz MALZACHER
  • Publication number: 20160032748
    Abstract: A guide blade for a gas turbine is disclosed. The guide blade includes a blade leaf having a receptacle in which at least one sealing element is arranged, where the sealing element is movable relative to the blade leaf between a sealing setting, in which the sealing element is at least partially moved out of the receptacle, and a storage setting, in which the sealing element is moved back into the receptacle. The guide blade further includes at least one fluid channel by which fluid under pressure can be routed into the receptacle in order to move the sealing element from the storage setting into the sealing setting. An inlet opening of the fluid channel is formed on a pressure-side surface of the blade leaf. A housing as well as a gas turbine having at least one guide blade is also disclosed.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Applicant: MTU Aero Engines AG
    Inventors: Alexander BOECK, Franz MALZACHER
  • Publication number: 20160032749
    Abstract: A leaf seal for sealing off a shaft rotating around an axis, particularly in a gas turbine, is disclosed. The leaf seal includes a plurality of leaves arranged spaced apart from one another, where the leaves are produced integrally with a basic element supporting the leaves by a generative production process. A process for producing a leaf seal for sealing off a shaft rotating around an axis is also disclosed.
    Type: Application
    Filed: July 30, 2015
    Publication date: February 4, 2016
    Applicant: MTU Aero Engines AG
    Inventors: Julian WEBER, Christoph CERNAY, Thomas HESS
  • Patent number: 9249686
    Abstract: A housing for a turbomachine includes a peripheral wall delimiting an annular space and a fluid conveying system for redirecting a partial flow of a main flow, which has an axial channel, a front annular channel and a rear annular channel in fluid connection with the axial channel and having a front annular space opening and a rear annular space opening. The fluid conveying system has a front valve device and a rear valve device controllable independently of the front valve device, for opening and closing the annular space openings, and an outlet opening for tapping the partial flow from the fluid conveying system. In the closed state of the rear annular space opening, the partial flow is directable through the rear annular channel and, in the closed state of the front annular space opening, the partial flow is directable through the front annular channel.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 2, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Sven Hiller, Erwin Bayer, Peter Geiger, Thomas Hess