Patents Assigned to Multidimension Technology Co., Ltd
  • Patent number: 11940299
    Abstract: This invention describes a magnetoresistive inertial sensor chip, comprising a substrate, a vibrating diaphragm, a magnetic field sensing magnetoresistor and at least one permanent magnet thin film. The vibrating diaphragm is located on one side surface of the substrate. The magnetic field sensing magnetoresistor and the permanent magnet thin film are set on the surface of the vibrating diaphragm displaced from the base of the substrate. A contact electrode is also arranged on the surface of the vibrating diaphragm away from the base of the substrate. The magnetic field sensing magnetoresistor is connected to the contact electrode through a lead. The substrate comprises a cavity formed through etching and either one or both of the magnetic field sensing magnetoresistors and the permanent magnet thin film are arranged in a vertical projection area of the cavity in the vibrating diaphragm portion.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 26, 2024
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Bin Qi, Lixian Feng, Haiping Guo, Weifeng Shen, Songsheng Xue
  • Patent number: 11852698
    Abstract: A magnetic sensor packaging structure with a hysteresis coil comprising a substrate, a sensor chip, a spiral hysteresis coil on the substrate, and wire bonding pads. The sensor bridge arms are composed of magnetoresistive sensing elements. The sensor bridge arms are deposited on the sensor chip, and the sensor bridge arms are electrically interconnected to form a magnetoresistive sensor bridge that is located on the hysteresis coil. The magnetic field generated by the spiral hysteresis coil is collinear with a sensitive axis of the sensor bridge. The magnetoresistive sensor bridge is located on the substrate and encapsulated. By placing the spiral hysteresis coil on the substrate, it is capable of supporting larger currents with smaller resistance value. This allows the sensor hysteresis to be effectively eliminated. In addition, the packaging structure manufacturing process is simple and cost effective.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 26, 2023
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Elamparithi Visvanathan
  • Publication number: 20230314177
    Abstract: Disclosed in the present invention are a capillary channel environmental sensor and a preparation method therefor. The capillary channel environmental sensor comprises a transfer cavity and at least one capillary channel. The cross sectional area of the transfer cavity is greater than the cross sectional area of the capillary channel, and one end of the capillary channel is connected with the transfer cavity; an elastic transfer diaphragm is provided between the transfer cavity and an external measurement environment. A positioned droplet is provided in the interior of the capillary channel, the positioned droplet is in tight contact with the inner walls of the capillary channel and the positioned droplet is in tight contact with a transfer medium.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 5, 2023
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: Insik JIN, Bin QI, Songsheng XUE
  • Publication number: 20230192477
    Abstract: The disclosed invention is a MEMS environmental sensor and preparation method thereof. A transfer cavity is produced in the middle of a transfer substrate of a MEMS environmental sensor, and a transfer medium is located inside the transfer cavity. The surface area of an input port is larger than the surface area of an output port. An elastic transfer membrane is provided on the surface of the input port, and an elastic pressure membrane is provided on the surface of the output port. A load bearing cavity is provided in a load bearing substrate, a magnetic sensing element is positioned inside the load bearing cavity, and the load bearing cavity partially overlaps with the output port. The surface area of the input port of the transfer cavity is larger than the surface area of the output port, and on the basis of Pascal's principle, differences in the volume of the transmission cavity are used to transform a small displacement in a region of large volume into a large displacement in a region of small volume.
    Type: Application
    Filed: April 15, 2021
    Publication date: June 22, 2023
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: Insik JIN, Bin QI, Songsheng XUE
  • Publication number: 20230168320
    Abstract: A magnetoresistive magnetic field probe with rotating electromechanical modulator (1) comprises: a bulk cylindrical base (11), wherein the bulk cylindrical base (11) has a cavity structure, and a center axis of the bulk cylindrical base (11) overlaps with a z-axis of a cylindrical coordinate system; a first magnetic tile (12) and a second magnetic tile (13) attached to an outer side wall of the bulk cylindrical base (11); and a magnetoresistive sensor (14) and a reference signal generator (15) located on the center axis of the bulk cylindrical base (11). During operation, the bulk cylindrical base (11) rotates about the z-axis at a frequency f, and the first magnetic tile (12) and the second magnetic tile (13) modulate an external magnetic field into a sensed magnetic field having a frequency 2f, and a measurement signal having a frequency 2f is output via the magnetoresistive sensor (14). The reference signal generator (15) outputs a reference signal having a frequency 2f.
    Type: Application
    Filed: April 16, 2021
    Publication date: June 1, 2023
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: James Geza DEAK, Zhimin ZHOU
  • Patent number: 11636889
    Abstract: An automatic magnetic flow recording device, comprises a multitude of coaxially disposed hard magnetic rotating wheels wherein the hard magnetic rotating wheels are circular, and rotate with respect to each other by a predetermined transmission ratio. Each hard magnetic rotating wheel has at least one corresponding biaxial magnetoresistive angle sensor. The biaxial magnetoresistive angle sensors measure the angular positions of the hard magnetic rotating wheels within the range of 0-360 degrees. The biaxial magnetoresistive angle sensors comprise two single-axis linear magnetoresistive sensors, wherein the single-axis linear magnetoresistive sensors are an X-axis magnetoresistive sensor or a Z-axis magnetoresistive sensor. The X-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component parallel to the tangent of the circumference of the hard magnetic rotating wheel.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: April 25, 2023
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo, Xiaofeng Cheng, Zhimin Zhou
  • Publication number: 20230123660
    Abstract: A magnetic probe-based current measurement device and measurement method is disclosed. The device comprises a conductor for a current under test, a magnetic probe, a magnetic bias structure, and a programmable chip. A conductor has a first axis, a second axis, and a third axis. The conductor is provided with through holes. The direction of the through holes are parallel to the third axis. Vertical projections of the through holes on a first cross section are symmetric about the first axis. At least one of the through holes has a center position located on the first axis. And/or every pair of the through holes have center positions that are symmetric about the first axis. The magnetic probe is provided within the through holes, and is electrically connected to the programmable chip. A sensitive center position of the magnetic probe is located on the first cross section. A vertical projection of the magnetic probe on the first cross section is symmetric about the first axis.
    Type: Application
    Filed: March 24, 2021
    Publication date: April 20, 2023
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: Pin QU, Songsheng XUE, Huijuan WANG, Zongxin LIU
  • Patent number: 11536779
    Abstract: A magnetoresistive Z-axis gradient sensor chip, which is used to detect the gradient in the XY plane of a Z-axis magnetic field component generated by a magnetic medium; the sensor chip comprises a Si substrate, a collection of two or two groups of flux guide devices separated a distance Lg and an arrangement of electrically interconnected magnetoresistive sensor units. The magnetoresistive sensor units are located on the Si substrate and located above or below the edge of the flux guide devices as well; the flux guide devices convert the component of the Z-axis magnetic field into the direction parallel to the surface of the Si substrate along the sensing axis direction of the magnetoresistive sensing units. The magnetoresistive sensor units are electrically interconnected into a half bridge or a full bridge gradiometer arrangement, wherein the opposite bridge arms are separated by distance Lg. This sensor chip can be utilized with a PCB or in combination with a PCB plus back-bias magnet with casing.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: December 27, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20220397557
    Abstract: A magnetoresistive acoustic wave sensor with high sensitivity and an array device thereof is disclosed, in which a magnetoresistive acoustic wave sensor comprises a protective tube shell, a magnetic vibration assembly, and a magnetoresistive chip located inside the protective tube shell. The protective tube shell comprises at least one opening which is covered by the magnetic vibration assembly. The plane where the magnetoresistive sensor chip is located is perpendicular to the plane where the magnetic vibration assembly is located, and the sensing direction of the magnetoresistive sensor chip is located in the plane where magnetoresistive sensor chip is located, and is perpendicular to or parallel to the plane where the magnetic vibration assembly is located.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 15, 2022
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: Bin QI, Songsheng XUE
  • Patent number: 11512939
    Abstract: A single-chip two-axis magnetoresistive angle sensor comprises a substrate located in an X-Y plane, a push-pull X-axis magnetoresistive angle sensor and a push-pull Y-axis magnetoresistive angle sensor located on the substrate. The push-pull X-axis magnetoresistive angle sensor comprises an X push arm and an X pull arm. The push-pull Y-axis magnetoresistive angle sensor comprises a Y push arm and a Y pull arm. Each of the X push, X pull, Y push arm, and Y pull arms comprises at least one magnetoresistive angle sensing array unit. The magnetic field sensing directions of the magnetoresistive angle sensing array units of the X push, X pull, Y push, and Y pull arms are along +X, ?X, +Y and ?Y directions respectively. Each magnetoresistive sensing unit comprises a TMR or GMR spin-valve having the same magnetic multi-layer film structure.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20220373513
    Abstract: A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive stress sensing elements is disclosed. The hydrogen gas sensor comprises: a deformable substrate, a magnetoresistive bridge stress sensor located on the deformable substrate, an electrical isolation layer covering the magnetoresistive bridge stress sensor, a magnetic shielding layer located on the electrical isolation layer, and a hydrogen sensing layer located above the deformable substrate. The hydrogen sensing layer is located in a plane perpendicular to the deformation of the substrate covering the electrical isolation layer. The hydrogen sensing layer is used for absorbing or desorbing hydrogen gas to generate expansion or contraction deformation and cause a stress change of the deformable substrate. The magnetoresistive bridge stress sensor is used for measuring a hydrogen gas concentration utilizing the stress change of the deformable substrate. It results in a hydrogen gas sensor with improved performance.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: James Geza DEAK, Zhimin ZHOU
  • Publication number: 20220342012
    Abstract: A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive sensing elements is provided. The hydrogen gas sensor comprises: a substrate in an X-Y plane, tunneling magnetoresistive sensors located on the substrate, and a hydrogen sensing layer located on the tunnel magnetoresistive sensors. The hydrogen sensing layer and the tunneling magnetoresistive sensor are electrically isolated from each other. The hydrogen sensing layer includes a multi-layer thin film structure formed from palladium layers and ferromagnetic layers, wherein the palladium layers are used for absorbing hydrogen in the air that causes a change in the orientation angle of a magnetic anisotropy field in each of the ferromagnetic layers in the X-Z plane into an X-axis direction. The tunnel magnetoresistive sensors are used for detecting a magnetic field signal of the hydrogen sensing layer, wherein the magnetic signal determines the hydrogen gas concentration. This hydrogen gas sensor ensures measurement safety.
    Type: Application
    Filed: August 18, 2020
    Publication date: October 27, 2022
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: James Geza DEAK, Zhimin ZHOU
  • Patent number: 11408949
    Abstract: A magnetoresistive hydrogen sensor and sensing method thereof, wherein the hydrogen sensor comprises a substrate located in an X-Y plane, magnetoresistive sensing units and magnetoresistive reference units located on the substrate. The magnetoresistive sensing units are electrically connected to form a sensing arm, and the magnetoresistive reference units are electrically connected to form a reference arm. The sensing arm and the reference arm are electrically interconnected to form a referenced bridge structure. The magnetoresistive sensing units and the magnetoresistive reference units may be AMR units having the same magnetic multilayer thin film structure, GMR spin valves, or GMR multilayer film stacks having the same magnetic multilayer thin film structure. The magnetoresistive sensing units and the magnetoresistive reference units are respectively covered with a Pd layer, and a passivating insulation layer is deposited over the Pd layer of the magnetoresistive reference units.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 9, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Xuanzuo Liu
  • Patent number: 11346901
    Abstract: An anisotropic magnetoresistive (AMR) sensor without a set and reset device may include a substrate, an exchange bias layer, an AMR layer and a collection of barber-pole electrodes. The exchange bias layer may be deposited on the substrate and the AMR layer may be deposited on the exchange bias layer. The AMR layer may include multiple groups of AMR strips, and each group may include several AMR strips. The barber-pole electrodes may be arranged on each AMR strip. The AMR sensor achieves coupling by using the exchange bias layer, without requiring a reset/set coil. Because a coil is not used, the power consumption of the chip is reduced greatly, and the manufacturing process is simpler, providing improved yield and lower cost.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: May 31, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Songsheng Xue, Xiaofeng Lei, Weifeng Shen, Lixian Feng
  • Patent number: 11300637
    Abstract: A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 12, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11287490
    Abstract: The present invention relates to a magnetoresistive sensor for measuring a magnetic field. A calculation of the sensitivity to external magnetic fields is provided, and it is shown to be related to the shape anisotropy of the magnetoresistive sensing elements. Moreover, it is shown that sensitivity may be made highest when the shape of the magnetoresistive element is long parallel to the sensing axis, and a magnetic bias field strong enough to saturate the magnetoresistive element's magnetization, Hcross, is applied perpendicular to the sensing axis. A monolithic permanent magnet is provided to generate the Hcross and it may be applied at an angle in order to counteract non-ideal fields along the sense axis direction. The high sensitivity magnetoresistive element can be used in many electrical form-factors. Six exemplary bridge configurations are described herein.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Insik Jin, Weifeng Shen, Songsheng Xue
  • Patent number: 11287491
    Abstract: A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11255927
    Abstract: A three-axis upstream-modulated low-noise magnetoresistive sensor comprises an X-axis magnetoresistive sensor, a Y-axis magnetoresistive sensor, and a Z-axis magnetoresistive sensor, wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils are separately supplied with high-frequency alternating current at a frequency f, from a current supply.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 22, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11169225
    Abstract: A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N?1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m?1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 9, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11137452
    Abstract: The present invention discloses a single-chip high-sensitivity magnetoresistive linear sensor, which comprises a substrate located in the X-Y plane and a soft ferromagnetic flux concentrator array located on the substrate. The soft ferromagnetic flux concentrator array comprises several soft ferromagnetic flux concentrators, wherein there is a gap between each two adjacent soft ferromagnetic flux concentrators. The +X and ?X magnetoresistive sensing unit array respectively comprises +X and ?X magnetoresistive sensing units located in the gaps. The +X and ?X magnetoresistive sensing units are electrically interconnected to form a push pull X-axis magnetoresistive sensor. Each of the magnetoresistive sensing units that have the same magnetic field sensing direction are arranged in adjacent locations. The magnetoresistive sensing units are all MTJ magnetoresistive sensor elements, and each has the same magnetic multi-layer film structure.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 5, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou