Patents Assigned to Multidimension Technology Co., Ltd
  • Patent number: 9958512
    Abstract: Disclosed in the present invention is a low-power magnetoresistive switch sensor, comprising an internal reference voltage circuit, a multiplexer, a magnetoresistive bridge circuit, a comparison circuit, a voltage stabilization circuit, a digital control circuit, and a digital output circuit; one end of the internal reference voltage circuit is grounded while the other end of the internal reference voltage circuit is connected to the output end of the voltage stabilization circuit; the comparison circuit comprises one or more comparators, one end of the comparison circuit is electrically connected with the voltage stabilization circuit while the other end is grounded, the comparison circuit is provided with one or more input ends and one or more output ends, and the one or more output ends of the comparison circuit are electrically connected with one input ends of the digital control circuit; one end of the magnetoresistive bridge circuit is electrically connected with the output end of the voltage stabilizat
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 1, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: Xiaojun Zhong
  • Patent number: 9952085
    Abstract: A multiturn pulley liquid level sensor device for measuring a liquid level in a well and in a container, comprising a mechanical float which is fastened to a fastening rope and which can slide up and down. The fastening rope is installed on one or more pulleys, and as the float moves up and down, the pulley rotates back and forth. One pulley is mechanically coupled to one digital absolute magnetic rotation encoder device, and the encoder device is used for monitoring the total rotation angle of the pulley in real time. By way of using an algorithm, the total rotation angle of the pulley is converted into a distance from the bottom to calculate the height of a liquid level. A multiwheel encoder has two reading types, i.e., one is an electrical signal reading type, and the other is an optical signal reading type. The electronic output of said encoder may be used as input to an industrial control system, or be sent via communications link to a remote or the internet.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 24, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Mark C. Tondra
  • Patent number: 9891292
    Abstract: A monolithic three-axis linear magnetic sensor and manufacturing method wherein the sensor comprises an X-axis sensor, a Y-axis sensor and a Z-axis sensor. The X-axis sensor comprises a referenced bridge and at least two X ferromagnetic flux guides. The Y-axis sensor comprises a push-pull bridge and at least two Y ferromagnetic flux guides. The Z-axis sensor comprises a push-pull bridge and at least one Z ferromagnetic flux guide. The bridge arms of the referenced bridge and push-pull bridge are each formed by one or more magnetoresistive elements that are electrically interconnected. The directions of the sensing axes and the directions of magnetization of the pinned layers of the magnetoresistive elements are all oriented along the X-axis. This manufacturing method comprises first depositing a magnetoresistive thin film on a wafer, and then performing several processes such as magnetic annealing, photolithography, etching, coating, and the like in order to realize a sensor.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: February 13, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Patent number: 9885764
    Abstract: A high sensitivity push-pull bridge magnetic sensor, wherein the sensor comprises two substrates, magnetoresistive sense elements, push-arm flux concentrators, and pull-arm flux concentrators, wherein the magnetization directions of the pinning layers of the magnetoresistive sense elements on the same substrate are the same, but are opposite to the magnetization directions of the pinning layers of the magnetoresistive sense elements on the adjacent substrate, and the magnetoresistive sense elements on one substrate are electrically interconnected to form a push-arm of the bridge, and the magnetoresistive sense elements on the other substrate are electrically interconnected to form a pull-arm of the bridge. The magnetoresistive sense elements on the push-arm and pull-arm are aligned respectively in the gaps between two adjacent push-arm flux concentrators and two adjacent pull-arm flux concentrators.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 6, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Dan Li
  • Patent number: 9880023
    Abstract: The present invention discloses a direct read metering device, comprising a digital counting wheel connected with a rotary shaft, a micro-controller—a ring magnet coaxially installed on the digital counting wheel, and a tunneling magnetoresistive angular displacement sensor installed radially displaced from the central axis of the annular magnet; the tunneling magneto-resistive angular displacement sensor and the ring magnet are separated by a certain distance in the direction parallel to the central axis of the ring magnet; the micro-controller is connected to the tunneling magnetoresistive angular displacement sensor and used to convert the output of the tunneling magnetoresistive angular displacement sensor into a readable number.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: January 30, 2018
    Assignee: Multidimension Technology Co., Ltd.
    Inventors: Feng Wang, Junyun Wang, Xiaofeng Cheng
  • Patent number: 9857434
    Abstract: The present invention provides a push-pull bridge-type magnetic sensor for high-intensity magnetic fields. The sensor comprises two substrates, magnetoresistive sensing elements, push arm attenuators, and pull arm attenuators. Magnetization directions of pinning layers of the magnetoresistive sensing elements located on a same substrate are parallel, and magnetization directions of pinning layers of the magnetoresistive sensing elements on different substrates are anti-parallel, wherein the magnetoresistive sensing elements on one substrate are electrically connected to one another to form push arms of a push-pull bridge, and the magnetoresistive sensing elements on the other substrate are electrically connected to one another to form pull arms of the push-pull bridge. The magnetoresistive sensing elements in the push arms and the pull arms are arranged in columns above or below the push arm attenuators and the pull arm attenuators.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: January 2, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Patent number: 9846058
    Abstract: The present invention relates to a non-contact potentiometer.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 19, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Junyun Wang, Feng Wang, Xiaofeng Cheng, Yulin Dai
  • Patent number: 9817084
    Abstract: A single-chip magnetic field sensor bridge, comprising a substrate, a reference arm, a sensing arm, shielding structures, and wire bond pads is disclosed. The reference arm and the sense arm respectively comprise at least two rows/columns of reference element strings and sense element strings formed by electrically connecting one or more identical magnetoresistive sensing elements. The reference element strings and the sense element strings are alternately arranged. The magnetoresistive sensing elements are AMR, GMR or TMR sensing elements. The reference element strings are provided with shielding structures thereon, and the sensing element strings are located in gaps between two adjacent shielding structures. The shielding structures are arrays of elongated strips composed of permalloy or another soft ferromagnetic material. The sensors can be implemented as one of three different bridge structures, called a quasi-bridge, a half-bridge, or a full-bridge.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: November 14, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Patent number: 9804235
    Abstract: A single magnetoresistor TMR magnetic field sensor chip and magnetic currency detector head; the single magnetoresistor TMR magnetic field sensor chip is installed above a magnetic excitation element; the sensing direction of the chip is parallel to the surface of the chip, and the direction of the magnetic excitation field generated at the chip by the magnetic excitation element is perpendicular to the surface of the chip; the chip comprises a substrate, a magnetic biasing structure deposited on the substrate, a magnetoresistive element, and an input/output terminal; the magnetoresistive element consists of MTJs; the sensing directions of the magnetoresistive element and the MTJs are the same as the sensing direction of the chip; and the direction of a bias magnetic field generated on the chip by the magnetic biasing structure is perpendicular to the sensing direction of the chip. The chip features high sensitivity, high signal-to-noise ratio, small size, high temperature stability and high reliability.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: October 31, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo
  • Patent number: 9805224
    Abstract: A magnetic anti-counterfeit label and identification system thereof, wherein the magnetic anti-counterfeit label comprises a substrate, a magnetic ink layer, an opaque layer and a protective coating. The magnetic ink layer covers the substrate. The opaque layer covers the magnetic ink layer in order to visually hide the characters, bar code, and other patterns which are printed using magnetic ink. Additionally the protective coating is composed of a polymer or a metal layer, which covers opaque layer. This identification system comprises a magnetic sensor for sensing the magnitude of the magnetic field emitted by the magnetic anti-counterfeit label, a permanent magnet or an electromagnet for magnetizing the magnetic anti-counterfeit label, a digital processing circuit that is electrically connected to the magnetic sensor, and a frame that is used to hold the magnetic sensor and the digital processing circuit. The digital processing circuit outputs a code corresponding to the magnetic anti-counterfeit label.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 31, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Xiaofeng Cheng
  • Patent number: 9797721
    Abstract: A three-axis digital compass comprising two X-axis magnetic sensors, two Y-axis magnetic sensors, a flux concentrator, a signal sampling unit, a signal processing unit, and a signal output unit is disclosed. The X-axis and Y-axis magnetic sensors are arranged along a periphery of the flux concentrator. An external magnetic field is distorted when passing through the flux concentrator. An Z axis component of the external magnetic field is converted into X-axis or Y-axis magnetic field components when passing through the flux concentrator, and the so converted components of the external magnetic field act on the X-axis and Y-axis magnetic sensitive sensors. An output signal of the X-axis and Y-axis magnetic sensitive sensors is sent to the signal processing unit through the signal sampling unit, and it is used to calculate the three orthogonal components of the external magnetic field. These calculated external magnetic field components are output in a digital format through the signal output unit.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: October 24, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou, Dan Li
  • Patent number: 9768726
    Abstract: A magnetoresistive mixer, comprising a spiral coil, a bridge-type magnetoresistive sensor and a magnetic shielding layer, wherein the spiral coil is located between the bridge-type magnetoresistive sensor and the magnetic shielding layer. Four tunnel magnetoresistive sensor units forming the bridge-type magnetoresistive sensor respectively contain N array-type magnetic tunnel junction rows. The magnetic tunnel junction rows are connected in series, parallel, or combination of series and parallel connections to form two port structures.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 19, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak
  • Patent number: 9748025
    Abstract: A magnetoresistive current limiter, comprising a substrate, a magnetoresistive sensor layer, a first insulating layer, a coil, a second insulating layer, a magnetic shield layer, and an input electrode and output electrode. The coil is located between the magnetic shield layer and the magnetoresistive sensor layer. The first and second insulating layers are isolated from the magnetoresistive sensor layer and the coil, and from the coil and the magnetic shield layer, respectively; the magnetoresistive sensor layer and the coil are connected in series, and are connected to the input electrode and the output electrode.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 29, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak
  • Patent number: 9739850
    Abstract: Push-pull half-bridge magnetoresistive switch, comprising two magnetic sensor chips, each magnetic sensor chip having a magnetic induction resistor and a magnetic induction resistor electrical connection pad. The two magnetic sensor chips are electrically interconnected and have opposite and parallel directions of induction, thus forming the push-pull half-bridge circuit. The magnetic induction resistor comprises one or a plurality of magnetoresistive elements connected in series. The magnetic induction resistor pads are located at adjacent edges of the magnetic sensor chips, and each pad may accommodate the welding of at least two bonding wires. The magnetoresistive switch may improve the sensitivity of a sensor, and decrease output voltage deviation and output voltage temperature drift, which is beneficial for decreasing the volume and increasing the performance of the switch sensor.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: August 22, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Jianmin Bai, Weifeng Shen, Xiaofeng Lei, Xiaojun Zhang, Xiaojun Zhong
  • Patent number: 9721415
    Abstract: A magnetic currency verification head may include a magnetoresistive sensor chip, and a magnetic bias unit disposed on the side of the magnetoresistive sensor chip away from the detection surface of the magnetic currency verification head, and separated from the magnetoresistive sensor chip; the magnetoresistive sensor chip comprises a gradiometric bridge circuit that includes magnetic sensor elements; the sensitive direction of the magnetic sensor elements is parallel to the detection surface of the magnetic currency verification head; and the magnetic bias unit has a recessed magnetic structure configured such that the magnetic field generated by the magnetic bias unit only has a small magnetic field component in the direction parallel to the detection surface, thereby enabling the magnetic sensor elements to operate in their linear range. As a result, the magnetic currency verification head has high sensitivity and signal-to-noise ratio.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: August 1, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Mingfeng Liu, Jianming Bai, Min Zhu
  • Patent number: 9722175
    Abstract: The present invention discloses a design and manufacturing method for a single-chip magnetic sensor bridge. The sensor bridge comprises four magnetoresistive elements. The magnetization of the pinned layer of each of the four magnetoresistive elements is set in the same direction, but the magnetization directions of the free layers of the magnetoresistive elements on adjacent arms of the bridge are set at different angles with respect to the pinned layer magnetization direction. The absolute values of the angles of the magnetization directions of the free layers of all four magnetoresistive elements are the same with respect with their pinning layers. The disclosed magnetic biasing scheme enables the integration of a push-pull Wheatstone bridge magnetic field sensor on a single chip with better performance, lower cost, and easier manufacturability than conventional magnetoresistive sensor designs.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 1, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Xiaofeng Lei, Insik Jin, James Geza Deak, Weifeng Shen, Mingfeng Liu, Songsheng Xue
  • Patent number: 9721126
    Abstract: Disclosed are a magnetic bar code chip and a reading method thereof. The magnetic bar code chip comprises binary information bits formed by N rows and M columns of permanent magnet bars and/or null bits, and information identification bits that are peripheral to the binary information bits. The information identification bits are composed of permanent magnet bar identifiers and used for representing a position and a state of the magnetic bar code chip. The permanent magnet bars and the null bits represent 1 and 0 or 0 and 1 respectively.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 1, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Weifeng Shen, Songsheng Xue, Zhimin Zhou
  • Patent number: 9715959
    Abstract: The present invention relates to a permanent magnet suitable for a magnetic angle encoder. The permanent magnet has an annular cylindrical structure and comprises a first permanent magnet unit and a second permanent magnet unit. The first permanent magnet unit and the second permanent magnet unit are geometrically symmetrical with respect to a diametral cross section. The magnetization intensity of the first permanent magnet unit and the magnetization intensity of the second permanent magnet unit are parallel to the axial direction of the annular cylinder and are in opposite directions, or the magnetization intensity of the first permanent magnet unit and the magnetization intensity of the second permanent magnet unit are perpendicular to the diametral cross section and are parallel to one another and in the same direction.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: July 25, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 9702943
    Abstract: A single chip push-pull bridge-type magnetic field sensor. The sensor comprises a substrate, bonding pads, magnetoresistance sensing elements, and flux concentrators, wherein the magnetoresistance sensing elements are positioned in the clearances of the adjacent flux concentrators, and the directions of the pinning layers of the magnetoresistance sensing elements are identical. The flux concentrators are divided into a push arm type and a pull arm type, the included angle between one type and an X-axis forward direction is positive, and the included angle between the other type and the X-axis forward direction is negative. The working principle of the sensor is that the magnetic field along the X-axis direction in the clearances of the flux concentrators are oppositely oriented. The sensor has the advantages of small size, low cost, simplicity in manufacturing, high sensitivity, good linearity, high sensitivity, wide working dynamic range, and the like.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: July 11, 2017
    Assignee: Multidimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Patent number: 9678178
    Abstract: Disclosed is a magnetoresistive magnetic field gradient sensor, comprising a substrate, a magnetoresistive bridge and a permanent magnet respectively disposed on the substrate; the magnetoresistive bridge comprises two or more magnetoresistive arms; each magnetoresistive arm consists of one or more magnetoresistive elements; each magnetoresistive element is provided with a magnetic pinning layer; the magnetic pinning layers of all the magnetoresistive elements have the same magnetic moment direction; the permanent magnet is disposed adjacent to each magnetoresistive arm to provide a bias field, and to zero the offset of the response curve of the magnetoresistive element; the magnetoresistive gradiometer includes wire bonding pads that can be electrically interconnected using wire bonding to an ASIC or to the lead frame of a semiconductor chip package.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: June 13, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Jianmin Bai, James Geza Deak, Mingfeng Liu, Weifeng Shen