Patents Assigned to National Chip Implementation Center
  • Publication number: 20130153969
    Abstract: A structure for a metal-oxide-semiconductor field-effect transistor (MOSFET) sensor is provided. The structure includes a MOSFET, a sensing membrane, and a reference electrode. The reference electrode and the sensing membrane are formed on the first surface of the MOSFET and are arranged in such a way that the reference electrode and the sensing membrane are uniformly and electrically coupled to each other. Thus, the electric field between the sensing membrane and the reference electrode is uniformly distributed therebetween to stabilize the working signal of the MOSFET sensor.
    Type: Application
    Filed: March 13, 2012
    Publication date: June 20, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Ying-Zong JUANG, Hann-Huei Tsai, Hsin-Hao Liao, Chen-Fu Lin
  • Patent number: 8466521
    Abstract: A hydrogen ion-sensitive field effect transistor and a manufacturing method thereof are provided. The hydrogen ion-sensitive field effect transistor includes a semiconductor substrate, an insulating layer, a transistor gate, and a sensing film. A gate area is defined on the semiconductor substrate having a source area and a drain area. The insulating layer is formed within the gate area on the semiconductor substrate. The transistor gate is deposited within the gate area and includes a first gate layer. Further, the first gate layer is an aluminum layer, and a sensing window is defined thereon. The sensing film is an alumina film formed within the sensing window by oxidizing the first gate layer. Thus, the sensing film is formed without any film deposition process, and consequently the manufacturing method is simplified.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: June 18, 2013
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chin-Long Wey, Chin-Fong Chiu, Ying-Zong Juang, Hann-Huei Tsai, Chen-Fu Lin
  • Publication number: 20130147560
    Abstract: A low noise amplifier with back-to-back connected diodes and a back-to-back connected diode with high impedance thereof are provided. The low noise amplifier includes a first operational amplifier (OP) and at least two first back-to-back connected diodes. The back-to-back connected diode with high impedance is formed from at least one MOS FET operated within a cut-off region. The first back-to-back connected diodes are connected electrically between the first input end and the first output end, and between the second input end and the second output end, of the first OP respectively. By the implementation of the present invention, the low noise amplifier is not only low noise, but also with low energy consumption, high stability, low circuitry complexity, and easily controlled manufacturing process.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 13, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Wei-Hsien CHEN, Kuei-Cheng Lin, Bing-Song Chen, Chien-Chih Lin
  • Publication number: 20130146899
    Abstract: A complementary metal-oxide semiconductor (CMOS) sensor with an image sensing unit integrated therein is provided. The CMOS sensor includes a first substrate, a CMOS circuit, and a sensing device. The first substrate has the image sensing unit formed thereon. The CMOS circuit is disposed on the first substrate and has a receiving space. The sensing device is disposed in the receiving space. The image sensing unit is located at a position from which the image sensing unit can monitor the sensing device. Accordingly, the image sensing unit monitors the sensing device by sensing its image.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 13, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Ying-Zong JUANG, Hann-Huei Tsai, Hsin-Hao Liao, Chen-Fu Lin
  • Patent number: 8451078
    Abstract: A CMOS-MEMS switch structure is disclosed. The CMOS-MEMS switch structure includes a first substrate, a second substrate, a first cantilever beam, and a second cantilever beam. The first and second substrates are positioned opposite each other. The first cantilever beam is provided on the first substrate, extends from the first substrate toward the second substrate, and bends downward. Likewise, the second cantilever beam is provided on the second substrate, extends from the second substrate toward the first substrate, and bends downward. The first and second substrates are movable toward each other to connect a first top surface of the first cantilever beam and a second top surface of the second cantilever beam, and away from each other so that the first top surface of the first cantilever beam and the second top surface of the second cantilever beam are disconnected, thereby closing or opening the CMOS-MEMS switch structure.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 28, 2013
    Assignees: National Chip Implementation Center, National Applied Research Laboratories
    Inventors: You-Liang Lai, Ying-Zong Juang, Hann-Huei Tsai, Sheng-Hsiang Tseng, Chin-Fong Chiu
  • Publication number: 20130110465
    Abstract: A chip structure having a history recording unit is provided. The chip structure includes a core circuit unit in addition to the history recording unit. The history recording unit includes a sensing unit, a record unit, and a deliver unit. The sensing unit detects the status of the core circuit unit and generates history information accordingly. The history information is saved into the record unit and can be further output by the deliver unit. Thus, the history information of the chip structure can be recorded and effectively used to eliminate the reliability problem of the chip structure.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 2, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chi-Sheng Lin, Chien-Ming Wu
  • Publication number: 20130100966
    Abstract: A system for transferring electric power and signals via a power line by time-division multiplexing includes a power line, electronic-circuit units, and controllers. The power line includes a first transmission line and a second transmission line. The first transmission line is connected with a first switch in series and is therefore divided into a source end and a loading end. The electronic-circuit units are connected in series between the loading end and the second transmission line. The controllers are electrically connected with and are configured for synchronously controlling the first switch and the electronic-circuit units. When the first switch is closed, electric power is transferred from an electric power source to the loading end, and when the first switch is opened, the electronic-circuit units transfer signals via the loading end. The system features simple circuitry and effectively reduces noise in signal transmission.
    Type: Application
    Filed: December 1, 2011
    Publication date: April 25, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chien-Ming Wu, Gang-Neng Sung
  • Patent number: 8410480
    Abstract: The present invention discloses a CMOS-MEMS cantilever structure. The CMOS-MEMS cantilever structure includes a substrate, a circuit structure, and a cantilever beam. The substrate has a circuit area and a sensor unit area defined thereon. The circuit structure is formed in the circuit area. The cantilever beam is disposed in the sensor unit area with one end floating above the substrate and the other end connecting to the circuit structure. With the above arrangement, the manufacturing process of CMOS-MEMS cantilever structure of this invention can be simplified. Furthermore, the structure of the cantilever beam is thinned down and therefore has a higher sensitivity.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: April 2, 2013
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chin-Fong Chiu, Ying Zong Juang, Hann Huei Tsai, Sheng-Hsiang Tseng, Chen-Fu Lin
  • Patent number: 8399303
    Abstract: The present invention provides a method for manufacturing a modularized integrated circuit (IC). The method includes the following steps: providing a base; and coupling an input/output module with the base. The base includes a lead-frame and a first package. The first package covers the lead-frame but exposes first contact points. The input/output module includes a first substrate, a plurality of first conducting columns, and a plurality of third contact points. A portion of each of the third contact points is electrically connected to a corresponding one of the first contact points. The method enhances the flexibility of IC design, and reduces the time and costs of developing new process techniques.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 19, 2013
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chi-Sheng Lin, Chi-Shi Chen, Chien-Ming Wu
  • Publication number: 20120279838
    Abstract: A CMOS-MEMS switch structure is disclosed. The CMOS-MEMS switch structure includes a first substrate, a second substrate, a first cantilever beam, and a second cantilever beam. The first and second substrates are positioned opposite each other. The first cantilever beam is provided on the first substrate, extends from the first substrate toward the second substrate, and bends downward. Likewise, the second cantilever beam is provided on the second substrate, extends from the second substrate toward the first substrate, and bends downward. The first and second substrates are movable toward each other to connect a first top surface of the first cantilever beam and a second top surface of the second cantilever beam, and away from each other so that the first top surface of the first cantilever beam and the second top surface of the second cantilever beam are disconnected, thereby closing or opening the CMOS-MEMS switch structure.
    Type: Application
    Filed: June 15, 2011
    Publication date: November 8, 2012
    Applicant: National Chip Implementation Center National Applied Research Laboratories.
    Inventors: You-Liang LAI, Ying-Zong JUANG, Hann-Huei TSAI, Sheng-Hsiang TSENG, Chin-Fong CHIU
  • Patent number: 8274794
    Abstract: A three-dimensional SoC structure formed by stacking multiple chip modules is provided. The three-dimensional SoC structure includes at least two vertical SoC modules and at least one connector module, wherein each connector module electrically connects two vertical SoC modules. Each vertical SoC module is constructed by stacking at least two chip modules vertically. Each chip module includes a module circuit board and at least one preset element. A recess is formed in each module circuit board and provided with a first connecting interface for electrically connecting with the corresponding at least one preset element. The at least two vertical SoC modules are connected by the connector module to form a three-dimensional SoC structure with multiple functions. Besides, the recesses formed in the module circuit boards provide effective heat dissipation paths for the preset elements.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: September 25, 2012
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chin-Long Wey, Chien-Ming Wu, Chih-Chyau Yang, Shih-Lun Chen, Chi-Shi Chen, Chi-Sheng Lin
  • Patent number: 8219879
    Abstract: A method for arranging memories of a low-complexity low-density parity-check (LDPC) decoder and a low-complexity LDPC decoder using the same method are provided. The main idea of the method for arranging memories of a low-complexity LDPC decoder is to merge at least one or two small-capacity memory blocks into one memory group, so that the memory area can be reduced and the power consumption in reading or writing data is lowered. Besides, as the merged memory group shares the same address line in reading or writing data, at least one delay unit is used to adjust the reading or writing order and thereby ensure data validity. A low-complexity LDPC decoder using the disclosed method can meet the demands of high processing rate and low power consumption.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: July 10, 2012
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chien-Ming Wu, Ming-Der Shieh, Chun-Ming Huang, Chi-Sheng Lin, Shih-Hao Fang, Shing-Chung Tang
  • Patent number: 8199510
    Abstract: A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: June 12, 2012
    Assignees: National Chip Implementation Center, National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chien-Ming Wu, Chih-Chyau Yang, Shih-Lun Chen, Chin-Long Wey, Chi-Shi Chen, Chi-Sheng Lin
  • Patent number: 8172622
    Abstract: A socket structure stack and a socket structure thereof are provided. The socket structure stack includes at least two socket structures, and each socket structure includes a main body, a plurality of conductive elements, and a plurality of connecting elements. The main body includes an inner plate and an outer plate, wherein the inner plate has a receiving portion and an embedded portion. The conductive elements are embedded in the embedded portion, and the connecting elements are mounted on the outer plate so as to connect adjacent socket structures together. The socket structures are so configured that ICs, processors, and printed circuit boards connected to the socket structures or the socket structures themselves can be recycled. Moreover, the printed circuit boards can be easily assembled to the socket structures, and the socket structures can be stacked up and securely connected to form a 3D structure which is otherwise difficult to put together by soldering.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: May 8, 2012
    Assignees: National Chip Implementation Center, National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Hui-Ming Lin, Chih-Chyau Yang, Chien-Ming Wu, Shih-Lun Chen
  • Publication number: 20120102254
    Abstract: The present invention discloses a virtualized peripheral hardware platform system. The virtualized peripheral hardware platform system includes a first hardware platform and a software platform, which is executed in a second hardware platform. The first hardware platform is in signal communication with the second hardware platform. The software platform not only simulates the operation of the peripheral device of the first hardware platform but also simulates input signals of virtual peripheral devices and then transmits the input signals to the first hardware platform to conduct further calculations. Furthermore, the input/output (I/O) interface of the second hardware platform can be simulated as the I/O interface of the first hardware platform, so as to decrease the number of the I/O interface which the first hardware platform needed and downsize the first hardware platform.
    Type: Application
    Filed: December 7, 2010
    Publication date: April 26, 2012
    Applicant: National Chip Implementation Center National Applied Research Laboratories.
    Inventors: Chun-Ming Huang, Chin-Long Wey, Hui-Ming Lin, Chien-Ming Wu, Kai-Chao Yang, Yu-Tsang Chang
  • Patent number: 8158063
    Abstract: A biosensor package structure with a micro-fluidic channel is provided. The biosensor package structure includes a substrate, a biochip, and a cover. The substrate has a first surface, a second surface, and an opening. The biochip is attached on the first surface. A bio-sensing area of the biochip is exposed to the opening of the substrate. The cover is attached on the second surface to cover the opening so as to form a micro-fluidic channel. By implementing the invention, the manufacturing process of the biosensor is simplified and the productivity is increased.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 17, 2012
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chin-Fong Chiu, Ying-Zong Juang, Hann-Huei Tsai, Chen-Fu Lin
  • Publication number: 20110282831
    Abstract: A device including a virtual drive system is provided. An image file can be identified as an ordinary physical disk drive via the device. The device includes a storage unit, an image management unit, and an operating-system interface. The storage unit is configured to store at least one image file. The image management unit includes an image management program which can manage the image files to be selected. The operating-system interface is connected by electrical signals with an operating-system apparatus and is controlled by the image management program to send a controlling signal to the operating-system apparatus. Therefore, the operating-system apparatus can identify as many physical disk drives as the corresponding selected image files.
    Type: Application
    Filed: June 23, 2010
    Publication date: November 17, 2011
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chien-Ming Wu, Wei-De Chien, Wei-Chang Tsai, Chin-Long Wey, Yu-Tsang Chang
  • Publication number: 20110188210
    Abstract: A three-dimensional SoC structure formed by stacking multiple chip modules is provided. The three-dimensional SoC structure includes at least two vertical SoC modules and at least one connector module, wherein each connector module electrically connects two vertical SoC modules. Each vertical SoC module is constructed by stacking at least two chip modules vertically. Each chip module includes a module circuit board and at least one preset element. A recess is formed in each module circuit board and provided with a first connecting interface for electrically connecting with the corresponding at least one preset element. The at least two vertical SoC modules are connected by the connector module to form a three-dimensional SoC structure with multiple functions. Besides, the recesses formed in the module circuit boards provide effective heat dissipation paths for the preset elements.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 4, 2011
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chun-Ming Huang, Chin-Long Wey, Chien-Ming Wu, Chih-Chyau Yang, Shih-Lun Chen, Chi-Shi Chen, Chi-Sheng Lin
  • Publication number: 20110181245
    Abstract: The present invention discloses a unitized charging and discharging battery management system and a programmable battery management module thereof The unitized charging and discharging battery management system includes a smart battery module and a programmable battery management module, which has a universal loop and a control unit. The smart battery module has at least two smart batteries which are electrically connected by a plurality of switches and circuits of the universal loop to form a charging/discharging loop in series/parallel. The control unit monitors the charging and discharging status of the smart batteries to turn on or off the switches accordingly, so as to manage the smart batteries, thereby enhancing the overall power efficacy of the smart battery module. Besides, the service life of the smart battery module is also prolonged due to the simultaneous charging and discharging capability.
    Type: Application
    Filed: March 22, 2010
    Publication date: July 28, 2011
    Applicant: National Chip Implementation Center National Applied Research Laboratories.
    Inventors: Chin-Long Wey, Chun-Ming Huang, Shih-Lun Chen, Chi-Sheng Lin, Ting-Hsu Chien, Jiann-Jenn Wang
  • Publication number: 20110169056
    Abstract: A hydrogen ion-sensitive field effect transistor and a manufacturing method thereof are provided. The hydrogen ion-sensitive field effect transistor includes a semiconductor substrate, an insulating layer, a transistor gate, and a sensing film. A gate area is defined on the semiconductor substrate having a source area and a drain area. The insulating layer is formed within the gate area on the semiconductor substrate. The transistor gate is deposited within the gate area and includes a first gate layer. Further, the first gate layer is an aluminum layer, and a sensing window is defined thereon. The sensing film is an alumina film formed within the sensing window by oxidizing the first gate layer. Thus, the sensing film is formed without any film deposition process, and consequently the manufacturing method is simplified.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 14, 2011
    Applicant: National Chip Implementation Center National Applied Research Laboratories.
    Inventors: Chin-Long Wey, Chin-Fong Chiu, Ying-Zong Juang, Hann-Huei Tsai, Chen-Fu Lin