Abstract: Disclosed is a display apparatus including two scanning circuits of the same configuration and layout, arranged on either sides of the display part. As long as one of the scanning circuits is in operation, the other scanning circuit is in a state in which no output signal is output.
Abstract: In a display module, a flexible wiring substrate is connected to a terminal portion of a flat display panel, and a reinforcing member is attached to at least one surface of the display panel. The reinforcing member is made wider than the flexible substrate and is arranged so as to cover those regions extending from an overlapping region of two substrates of the display panel to a region extending and reaching the flexible substrate located outside of the terminal portion.
Abstract: There is provided a method of driving a backlight of a liquid crystal display device capable of eliminating leakage of light from adjacently-placed light emitting blocks. A gray level and maximum gray level of an input video signal are inputted for every light-emitting block. An output average gray level is calculated and a lighting control signal corresponding to converted luminance is outputted. The drivers responding to the lighting control signal makes LEDs (Light Emitting Diodes) emit light. An average gray level from an output from sensors is calculated. An average gray level, based on an average gray level and a light leakage rate, by taking light leakage into consideration. A gray level correcting signal is outputted in the light-emitting block based on the above output average gray level. An output average gray level is corrected in response to a gray level correcting signal.
Abstract: A liquid crystal display device includes a liquid crystal display panel and a light source consisting of a plurality of light emitting devices and the light emitting devices are divided into a plurality of groups, and each group's light emitting device is mounted on a different structural member, respectively.
Abstract: To achieve TFT having a high light-resistance characteristic with a suppressed light leak current at low cost by simplifying the manufacturing processes. The TFT basically includes a light-shielding film formed on a glass substrate that serves as an insulating substrate; an insulating film formed on the light-shielding film; a semiconductor film formed on the insulating film; and a gate insulating film formed on the semiconductor film. Each layer of a laminate that is configured with three layers of the light-shielding film, the insulating film, and the semiconductor film is patterned simultaneously. Further, each layer of the laminate is configured with silicon or a material containing silicon.
Abstract: To provide a pixel matrix and the like, which are capable of improving the picture quality by suppressing generation of flicker and crosstalk without deteriorating the numerical aperture of the pixels and without increasing the manufacturing cost. A first switch device has transistors connected in series. When selected by a gate line, the transistors are set ON simultaneously to apply a voltage, which is supplied from a data line, to a pixel electrode. A second switch device has a transistor and a control capacitor. When selected by a gate line different from the one mentioned above, the transistor is set ON to supply a prescribed potential to a connection point between the transistors of the first switch, and the prescribed potential is stored at the control capacitor. When not selected by the both gate lines, the potential of the connection point is kept to the potential stored at the control capacitor.
Abstract: An active-matrix-drive LCD includes a TFT substrate, on which a TFT is formed. The TFT includes a gate electrode layer, a gate insulating film, a patterned semiconductor layer, and a source/drain electrode layer, which are consecutively formed on an insulating substrate of the TFT substrate. The gate electrode layer has a thickness smaller than a thickness of the gate insulating film.
Abstract: There is provided a light emission control circuit being capable of simplifying a power source circuit reducing costs and power consumption. A constant current circuit is serially connected to a specified light emitting device group out of a plurality of light emitting device groups and a power source circuit supplies power to each light emitting device group and a current detecting unit detects a current flowing through a specified light emitting device group and a power control unit controls a power source circuit based on a pre-set current value and on a detected value.
Abstract: A TFT of the present invention includes a gate electrode, a gate insulating film and a first semiconductor film which are sequentially formed on an insulating substrate, a second semiconductor film including a high density impurity which is formed on the first semiconductor film while being separated into portions at grade and a first electrode and a second electrode, each of which is formed on the separated second semiconductor film. Further, a peripheral portion of the first semiconductor film includes a protruded portion toward the outside from an edge of the second semiconductor film, and a surface of the protruded portion is roughened. By roughening the surface of the protruded portion, an on-current of the TFT can be maintained and the leakage current can be suppressed.
Abstract: Extraction wirings are respectively connected to a signal line of a switching element and a scanning line thereof, and led out to one side portion of a transparent insulating substrate. Conductive terminals respectively united with the extraction wiring are formed in tip end portions thereof, and a plurality of contact holes connected to the conductive terminals are formed on the conductive terminals so that a diver IC is mounted thereon by using conductive resin. Each of the extraction wirings is provided with a semiconductor film pattern in the vicinity of the contact hole for blocking the moisture in the conductive resin to reach the extraction wirings through an interlayer insulating film.
Abstract: A method for manufacturing a thin film semiconductor device is provided which is capable of achieving simplification of manufacturing processes and of improving alignment accuracy without using a plurality of alignment masks. An alignment pattern is formed by using a resist layer having a plurality of regions each having a different film thickness corresponding to each of a plurality of patterns produced using a halftone mask having a halftone exposure region as a photomask and by forming a light transmitting portion to be an aperture pattern and by etching an underlying silicon layer. By having an underlying silicon layer exposed and implanting ions into an entire resist layer, only a main pattern region is doped with the ions.
Abstract: An LCD device has a reflective area that reflects light incident from a polarizing film side using a reflection film, and a transmissive area that transmits light of a backlight incident from a TFT substrate side. The drive voltages of the reflective area and transmissive area are Vr and Vt, the black voltage in the reflective area is Vr (K), the black voltage in the transmissive area is Vt (K). The reflectance R, the transmittance T, characteristics of R with respect to drive voltage [Vr(K)-Vr] and characteristics of T with respect to drive voltage [Vt-Vt (K)] substantially match each other.
Abstract: An in-plane-switching-mode (IPS) LCD device includes a TFT substrate and a CF substrate sandwiching therebetween a liquid crystal (LC) layer, and a pair of polarizing films sandwiching therebetween the TFT and CF substrates and LC layer. The TFT substrate includes a SiNx insulation layer having a higher refractive index compared to the TFT substrate and LC layer. The thickness (d) of the SiNx layer is expressed by d=(100+170×k)±30 where k is an integer not smaller than zero and not larger than 5. The protective layer of the light-incident-side polarizing film near the insulation film has a thickness larger than zero and not larger than 57 ?m.
Abstract: A method for changing an amorphous silicon film to a poly-crystalline silicon film includes the steps of irradiating an elongate pulse laser beam onto the silicon film while scanning in the direction normal to the major axis of the elongate pulse laser beam, to form a plurality of irradiated areas, irradiating flat-surface light onto the irradiated areas in the direction parallel to the major axis, and analyzing distribution of the reflected light from the irradiated areas to determine the threshold value of micro-crystallization. The threshold value is used to further determine an energy density of the elongate pulse laser beam for the phase change process.
Abstract: A liquid crystal display device with a touch panel has a reflective display region and a transmissive display region, at least the transmissive display region including a liquid crystal layer energizable according to a lateral electric field mode. The liquid crystal display device includes a liquid crystal layer held between a pair of substrate disposed in confronting relation to each other, observer-side circular polarizer 9 disposed outwardly of one of the substrates, back-side circular polarizer 8 disposed outwardly of the other substrate, observer-side compensator 11 for reducing refractive index anisotropy of the liquid crystal layer in the reflective display region and the liquid crystal layer in the transmissive display region, and touch panel 13 disposed between observer-side circular polarizer 9 and observer-side compensator 11.
Type:
Application
Filed:
March 20, 2008
Publication date:
January 1, 2009
Applicant:
NEC LCD TECHNOLOGIES, LTD.
Inventors:
Jin MATSUSHIMA, Ken Sumiyoshi, Shinichi Uehara
Abstract: Disclosed is a display device including: a display panel on which a plurality of driver chips are mounted by using a COG configuration; a signal substrate on which a timing controller for generating a differential signal inputted into each of the driver chips is formed; and a connecting substrate which connects the plurality of driver chips with the timing controller, wherein the connecting substrate includes a first connecting substrate on which a first line for inputting the differential signal into a driver chip excluding a driver chip located at a terminating area is formed and a second connecting substrate on which a second line for inputting the differential signal into the driver chip located at the terminating area, and wherein a termination resistor connects the second line for transmitting the differential signal which is formed on the second connecting substrate.
Abstract: An active-matrix addressing substrate improves the degradation of initial alignment of liquid-crystal molecules caused by the steps or level differences due to the pixel electrodes and/or the common electrode. The pixel electrodes are formed on or over the first insulating layer and the common electrode is formed on the second or third insulating layer. The second insulating layer has steps or level differences due to the pixel electrodes in their vicinities. The second insulating layer is made of a dielectric material having fluidity prior to hardening, e.g., an acrylic resin. The steps of the second insulating layer are relaxed, resulting in the gently sloping steps. The steps of an overlying alignment layer due to the common electrode slope gently as well. The thickness of the pixel electrodes, the thickness and inclination angle of the second insulating layer, and the thicknesses of the pixel and common electrodes are defined.
Abstract: A liquid crystal display panel according to an exemplary aspect of the invention includes a pair of substrates, liquid crystal being arranged between the pair of substrates and spherical spacers being arranged between the pair of substrates. A partial area of at least one substrate of the pair of substrates is roughened, and each of the spherical spacers includes a plurality of projections on a surface thereof and is arranged on the roughened partial area.
Abstract: The present invention provides a high-performance silicon oxide film as a gate insulation film and a semiconductor device having superior electric characteristics. The silicon oxide film according to the present invention includes CO2 in the film, wherein, when an integrated intensity of a peak is expressed by (peak width at half height)×(peak height) in an infrared absorption spectrum, the integrated intensity of a CO2-attributed peak which appears in the vicinity of a wave number of 2,340 cm?1 is 8E-4 times or more with respect to the integrated intensity of an SiO2-attributed peak which appears in the vicinity of a wave number of 1,060 cm?1.
Type:
Application
Filed:
June 2, 2008
Publication date:
December 4, 2008
Applicant:
NEC LCD TECHNOLOGIES, LTD.
Inventors:
Shigeru MORI, Hiroshi TANABE, Jun TANAKA
Abstract: An amorphous-silicon TFT (thin-film-transistor) in an LCD device has a larger channel length at both the edge portions of the channel of the TFT compared to the central portion of the channel by forming chamfers at the corners of the source and drain electrodes. The larger channel length at both the edge portions reduces the leakage current caused by the turned-around light incident onto the channel.