Patents Assigned to Neomax Materials Co., Ltd.
  • Publication number: 20130252094
    Abstract: This secondary battery negative electrode material constitutes an active material layer formed on a current collector layer of a secondary battery negative electrode and includes a Si particle and a coating material containing Ni and P, formed to cover a surface of the Si particle.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 26, 2013
    Applicants: TOTTORI UNIVERSITY, NEOMAX MATERIALS CO., LTD.
    Inventors: Hiroki Sakaguchi, Hiroyuki Usui, Ryouji Inoue, Setsuo Andoh, Ken Asada
  • Patent number: 8431820
    Abstract: A more thinnable hermetic sealing cap can be provided. This hermetic sealing cap (10) is employed for an electronic component housing package (100) housing an electronic component (40) and includes a cap body portion (1) mainly composed of Ti.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 30, 2013
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Masaharu Yamamoto, Junji Hira
  • Patent number: 8338058
    Abstract: There is provided a separator for a fuel cell having a very good anticorrosiveness and electrical conductivity. A separator for a fuel cell according to the present invention includes: a base 1 formed of a steel which contains 10.5 mass % or more of Cr; a metal film 3 formed on the surface of the base 1; and an intermediate layer 2 formed between the base 1 and the metal film 3, the intermediate layer 2 containing oxygen. The metal film 3 is composed of at least one metallic element selected from the group consisting of Ta, Nb, and Ti, and the intermediate layer 2 contains Fe and Cr which are contained in the steel and at least one metallic element selected from the group consisting of Ta, Nb, and Ti composing the metal film 3.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: December 25, 2012
    Assignee: Neomax Materials Co., Ltd.
    Inventor: Fumiaki Kikui
  • Patent number: 8334078
    Abstract: A separator for a fuel cell according to the present invention includes: a base 1 containing 70 mass % or more of Al; an underlying layer 2 being formed on the base and containing Ti; an intermediate layer 3 being formed on the underlying layer and containing TiNx or TiOy; and a conductive metal layer 4 being formed on the intermediate layer and containing Au or Pt. The separator for a fuel cell according to the present invention has an excellent anticorrosiveness although a base containing aluminum as a main component is used.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 18, 2012
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Masayuki Yokota, Fumiaki Kikui, Ken Asada
  • Publication number: 20120292294
    Abstract: A cladding material for a lead capable of inhibiting foreign matter from remaining on a surface can be obtained. The cladding material (1) is a cladding material for a lead welded to a terminal (21, 22) of a battery (2) and comprises a first Ni layer (11) arranged on a side welded to the terminal of said battery, a second Ni layer (12) arranged on a side opposite to said welded side and an Fe layer (10) arranged to be held between said first Ni layer and said second Ni layer. The thickness of the first Ni layer is at least 2.1% and not more than 8.2% of the thickness of said cladding material consisting of the first Ni layer, the second Ni layer and the Fe layer.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 22, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Yoshimitsu Oda, Masaaki Ishio
  • Publication number: 20120202090
    Abstract: An aluminum bonding alloy is an Ni—Mg alloy for bonding aluminum and a non-aluminum metal selected from steel, copper, nickel or titanium. The Ni—Mg alloy consists essentially of 0.08-0.90 mass % Mg, and the balance of Ni and inevitable impurities. A clad material includes a non-aluminum metal layer made of the non-aluminum metal and a bonding alloy layer made of the aluminum bonding alloy. The non-aluminum metal layer and the bonding alloy layer are bonded together by pressure welding and diffusion bonding.
    Type: Application
    Filed: October 25, 2010
    Publication date: August 9, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Shinji Yamamoto, Masaaki Ishio
  • Publication number: 20120177943
    Abstract: A metal substrate for a solar battery capable of inhibiting power generation efficiency of a unit solar cell from decrease due to a defect of the unit solar cell is provided. This metal substrate (1) for a solar battery includes a cladding material having a first metal layer (11) with a first surface (11a) formed with a unit solar cell (2) and a second metal layer (12) bonded to the first metal layer on a second surface (11b) opposite to the first surface, while a kurtosis (Rku) serving as an index indicating surface roughness of the first surface is not more than 7.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Shinji Yamamoto, Ryouji Inoue, Keita Watanabe, Masaaki Ishio
  • Publication number: 20120077056
    Abstract: A high-temperature bimetal capable of being inhibited from considerably shifting from an original position when the temperature has fallen to an ordinary temperature is provided. This high-temperature bimetal (1) includes a high thermal expansion layer (2) made of austenitic stainless steel and a low thermal expansion layer (3) made of a thermosensitive magnetic metal having a Curie point and bonded to the high thermal expansion layer. The high-temperature bimetal is employed over both a high temperature range of not less than the Curie point and a low temperature range of less than the Curie point, while an upper limit of operating temperatures in the high temperature range of not less than the Curie point is at least 500° C.
    Type: Application
    Filed: May 21, 2010
    Publication date: March 29, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Yoshimitsu Oda, Masaaki Ishio
  • Publication number: 20120058360
    Abstract: A clad plate includes an aluminum plate and a hard metal plate such as a copper plate, joined together at side end surfaces thereof, the clad plate being excellent in joint strength and flexural separation-resistant characteristics. A side end surface of an aluminum plate and a side end surface of a hard metal plate are jointed together via a nickel layer by pressure welding. A ridge and a groove formed in the side end surface of the aluminum plate are respectively engaged and joined, via the nickel layer, to a groove and a ridge formed in the side end surface of the hard metal plate, and an end portion of the nickel layer extends beyond the rear end portion of the side end surface of the aluminum plate and is jointed to the plate surface of the aluminum plate with the end portion exposed thereon. The average width W of the exposed portion of the nickel layer exposed on the plate surface is preferably in the range from about 0.2 mm to about 1.5 mm.
    Type: Application
    Filed: January 8, 2010
    Publication date: March 8, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Yoshimitsu Oda, Masaaki Ishio, Toshiaki Fujita
  • Patent number: 8101867
    Abstract: An electroless Ni—P plating method according to the present invention includes the steps of: providing a substrate including an insulating substrate and a copper alloy layer that has a predetermined pattern including a plurality of island portions that are isolated from each other; providing a plating solution to carry out electroless Ni—P plating; providing a solid piece including Ni, Ni—P, Co or Co—Ni on at least the surface thereof; and bringing the solid piece into contact with the surface of at least two of the island portions that are both in contact with the plating solution, thereby selectively forming an electroless Ni—P plated coating on the surface of the island portions. Thus, the present invention provides a Ni—P plating method that can subject the copper pattern on the insulating substrate to high-precision selective Ni—P plating on an industrial basis.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: January 24, 2012
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Masayuki Yokota, Ken Asada, Fumiaki Kikui
  • Publication number: 20120006884
    Abstract: A clad material for a wiring connection has an electroconductive layer formed from either pure Cu or a Cu alloy having higher electroconductivity than pure Al, a surface layer formed from either pure Al or an Al alloy and layered on one surface of the electroconductive layer, and a solder layer formed by hot-dip solder plating on the other surface of the electroconductive layer. The wiring connection member has a first connection end provided with an electroconductive layer soldered to an electrode of a semiconductor element, and a second connection end provided with an electroconductive layer soldered to, for example, an external wiring device. The wiring connection member is processed from the clad material for a wiring connection. This wiring member prevents molten solder from depositing on a pressing and heating portion of a local heating apparatus while also possessing excellent solderability.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Kazuhiro SHIOMI, Masaaki ISHIO
  • Patent number: 8088536
    Abstract: There is provided a fuel cell separator having a very good anticorrosiveness and electrical conductivity. A fuel cell separator includes: a base formed of a steel which contains 10.5 mass % or more of Cr; a metal film formed on the surface of the base; and an intermediate layer formed between the base and the metal film, the intermediate layer containing oxygen. The metal film is composed of Au or Pt, and the intermediate layer contains Fe and Cr which are contained in the steel and Au or Pt composing the metal film.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: January 3, 2012
    Assignee: Neomax Materials Co., Ltd.
    Inventor: Fumiaki Kikui
  • Publication number: 20110318484
    Abstract: A silver-coated ball 10 according to the present invention includes: a spherical core 1; and a coating layer 2 including silver superfine particles, which is arranged so as to surround the core 1. The silver superfine particles included in the coating layer 2 have a mean particle size of 1 nm to 50 nm.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Ken ASADA, Fumiaki KIKUI
  • Patent number: 8039107
    Abstract: A silver-coated ball 10 according to the present invention includes: a spherical core 1; and a coating layer 2 including silver superfine particles, which is arranged so as to surround the core 1. The silver superfine particles included in the coating layer 2 have a mean particle size of 1 nm to 50 nm.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: October 18, 2011
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Ken Asada, Fumiaki Kikui
  • Patent number: 8029918
    Abstract: A brazing method includes assembling a first member and a second member, the first member including a base plate made of a ferrous material and a diffusion suppressing layer laminated on the base plate and made of a Ni—Cr alloy including more than about 15% and less than about 40% of Cr, the second member being disposed on the first member with a brazing material of a Cu—Ni alloy including more than about 10% and less than about 20% of Ni therebetween, and maintaining the temporary assembly at a temperature of more than about 1,200° C. to fuse the brazing material and diffuse Ni atoms and Cr atoms into the fused brazing material to form the braze joint, causing the resulting brazing material to have an increased melting point due to the Ni and Cr contents of the braze joint to self-solidify the braze joint, and then cooling the resulting assembly.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 4, 2011
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Tsuyoshi Hasegawa, Masaaki Ishio, Shunji Kajikawa, Yoshitsugu Sakamoto, Takayuki Hayashi
  • Patent number: 8029916
    Abstract: A brazing filler metal capable of improving both of oxidation resistance and corrosion resistance is obtained. This brazing filler metal (1, 1d, 51 and 51a) consists of at least a three-layer structure of an Ni—Cr brazing layer (2 and 2a) consisting of an Ni—Cr alloy layer, a Ti brazing layer (3, 3a, 3b, 3c and 3d) consisting of a Ti layer or a Ti alloy layer and an Ni brazing layer (4, 4a, 4b, 4c and 4d) consisting of an Ni layer or an N alloy layer arranged between the Ni—Cr brazing layer and the Ti brazing layer.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: October 4, 2011
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Tsuyoshi Hasegawa, Masaaki Ishio, Yoshimitsu Oda
  • Publication number: 20110156982
    Abstract: A screw for use in a radio wave receiver includes a metal screw body that includes a shank and a head, and an insulation resin layer formed on at least a back of the screw head. In the radio wave receiver, a back cover and a case are secured together firmly by a threaded engagement of a threaded part of the shank, on which no insulation resin layer is formed, with a screw hole formed in the case while the insulation resin layer is disposed therebetween.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicants: NEOMAX MATERIALS CO., Ltd., CASIO COMPUTER CO., LTD.
    Inventors: Ken ASADA, Takayuki Furujyo, Yoshihiro Maruyama, Junichi Sato
  • Publication number: 20110048757
    Abstract: A more thinnable hermetic sealing cap can be provided. This hermetic sealing cap (10) is employed for an electronic component housing package (100) housing an electronic component (40) and includes a cap body portion (1) mainly composed of Ti.
    Type: Application
    Filed: January 30, 2009
    Publication date: March 3, 2011
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Masaharu Yamamoto, Junji Hira
  • Patent number: 7830001
    Abstract: A Cu—Mo substrate 10 according to the present invention includes: a Cu base 1 containing Cu as a main component; an Mo base having opposing first and second principal faces 2a, 2b and containing Mo as a main component, the second principal face 2b of the Mo base 2 being positioned on at least a portion of a principal face 1a of the Cu base 1; and a first Sn—Cu-type alloy layer 3 covering the first principal face 2a and side faces 2c and 2d of the Mo base 2, the first Sn—Cu-type alloy layer 3 containing no less than 1 mass % and no more than 13 mass % of Sn.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: November 9, 2010
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Masayuki Yokota, Kazuhiro Shiomi, Fumiaki Kikui, Masaaki Ishio
  • Publication number: 20100273025
    Abstract: A brazing method which provides a braze joint having excellent corrosion resistance and a brazed structure including such a braze joint includes assembling a first member and a second member to be joined into a temporary assembly, the first member including a base plate made of a ferrous material and a diffusion suppressing layer laminated on the base plate and composed of a N—Cr alloy essentially including not less than about 15% and not greater than about 40% of Cr, the second member being disposed on the diffusion suppressing layer of the first member with intervention of a brazing material of a Cu—Ni alloy essentially including not less than about 10% and not greater than about 20% of Ni, and maintaining the temporary assembly at a temperature of not less than about 1,200° C.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Tsuyoshi Hasegawa, Masaaki Ishio, Shunji Kajikawa, Yoshitsugu Sakamoto, Takayuki Hayashi