Patents Assigned to Nest Labs, Inc.
  • Publication number: 20140203935
    Abstract: A sensor unit that includes at least one sensor configured to measure an ambient condition is described. The controller can be configured to receive instructions, to report a notice level when the controller determines that data measured by the at least one sensor fails a report threshold test corresponding to a report threshold value. The controller can also be configured to obtain a plurality of calibration measurements from the at least one sensor during a calibration period and to adjust the threshold based on the calibration measurements. The controller can be configured to compute a first threshold level corresponding to background noise and a second threshold level corresponding to sensor noise, and to compute the report threshold value from the second threshold. In one embodiment, the sensor unit adjusts one or more of the thresholds based on ambient temperature.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 24, 2014
    Applicant: Nest Labs, Inc.
    Inventor: Lawrence Kates
  • Publication number: 20140207721
    Abstract: Systems and methods for forecasting events can be provided. A measurement database can store sensor measurements, each having been provided by a non-portable electronic device with a primary purpose unrelated to collecting measurements from a type of sensor that collected the measurement. A measurement set identifier can select a set of measurements. The electronic devices associated with the set of measurements can be in close geographical proximity relative to their geographical proximity to other devices. An inter-device correlator can access the set and collectively analyze the measurements. An event detector can determine whether an event occurred. An event forecaster can forecast a future event property. An alert engine can identify one or more entities to be alerted of the future event property, generate at least one alert identifying the future event property, and transmit the at least one alert to the identified one or more entities.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 24, 2014
    Applicant: NEST LABS, INC.
    Inventors: John B. Filson, Eric B. Daniels, Adam Mittleman, Sierra L. Nelmes, Yoky Matsuoka
  • Publication number: 20140203943
    Abstract: A low cost, robust, wireless sensor that provides an extended period of operability without maintenance is described. The wireless sensors are configured to communicate with a base unit or repeater. When the sensor unit detects an anomalous ambient condition (e.g., smoke, fire, water, etc.) the sensor communicates with the base unit and provides data regarding the anomalous condition. The sensor unit receives instructions to change operating parameters and/or control external devices.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 24, 2014
    Applicant: Nest Labs, Inc.
    Inventor: Lawrence Kates
  • Patent number: 8788103
    Abstract: A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors for receiving a plurality of HVAC control wires corresponding to an HVAC system. The thermostat also includes a thermostat processing and control circuit configured to at least partially control the operation of the HVAC system and a powering circuit coupled to the HVAC wire connectors and configured to provide an electrical load power to the thermostat processing and control circuit. The powering circuit has a power extraction circuit configured to extract electrical power from one or more of the plurality of received HVAC control wires up to a first level of electrical power, a rechargeable battery, and a power control circuit. The power control circuit is configured to provide the electrical load power using power from the power extraction circuit and the rechargeable battery.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Daniel Adam Warren, Hugo Fiennes, Jonathan Alan Dutra, David Bell, Anthony Michael Fadell, Matthew Lee Rogers, Ian C. Smith, Edwin H. Satterthwaite, Jr., Joseph E. Palmer, Grant M. Erickson, Andrea Mucignat
  • Patent number: 8788448
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: July 22, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20140200719
    Abstract: A combined business and technical method is described in which a paid subscription service is offered to provide “premium” HVAC algorithms for a network-connected, multi-sensing learning thermostat. The users who have chosen to pay for the premium subscription service are provided with at least one additional feature, capability, and/or option that is not provided to unpaid “basic” subscribers of a cloud-based thermostat servicing system that is provided for all thermostat owners. According to some embodiments, an on-line interview process is administered to gather additional information for improving the settings of the thermostat. According to some embodiments, an active test is performed to determine thermal characteristics of the structure. According some embodiments, the user guaranteed to at least recoup the cost of the premium service through energy cost savings.
    Type: Application
    Filed: December 12, 2013
    Publication date: July 17, 2014
    Applicant: NEST LABS, INC.
    Inventors: Anthony Michael Fadell, Yoky Matsuoka, Matthew Lee Rogers
  • Publication number: 20140195012
    Abstract: The current application is directed to intelligent controllers that initially aggressively learn, and then continue, in a steady-state mode, to monitor, learn, and modify one or more control schedules that specify a desired operational behavior of a device, machine, system, or organization controlled by the intelligent controller. An intelligent controller generally acquires one or more initial control schedules through schedule-creation and schedule-modification interfaces or by accessing a default control schedule stored locally or remotely in a memory or mass-storage device. The intelligent controller then proceeds to learn, over time, a desired operational behavior for the device, machine, system, or organization controlled by the intelligent controller based on immediate-control inputs, schedule-modification inputs, and previous and current control schedules, encoding the desired operational behavior in one or more control schedules and/or sub-schedules.
    Type: Application
    Filed: December 6, 2013
    Publication date: July 10, 2014
    Applicant: Nest Labs, Inc.
    Inventors: Yoky Matsuoka, Eric A. Lee, Steven A. Hales, Mark D. Stefanski, Rangoli Sharan
  • Patent number: 8770491
    Abstract: A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors including a connection to at least one call relay wire. The thermostat may also include a powering circuit, including a rechargeable battery, which is configured to provide electrical power to the thermostat by power stealing from a selected call relay wire. The power stealing may comprise an active power stealing mode, in which power is taken from the same selected call relay wire that is used to call for an HVAC function, and an inactive power stealing mode in which, in which no active call is being made. The powering circuit may be configured to substantially suspend (or at least reduce the level of) power stealing for at least a first time period following each transition of the thermostat from between operating states.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: July 8, 2014
    Assignee: Nest Labs Inc.
    Inventors: Daniel Adam Warren, Edwin H. Satterthwaite, Jr., Ian C. Smith
  • Publication number: 20140188288
    Abstract: A control unit for controlling the operation of at least one smart-home system may include at least one occupancy sensor and a processing system. The processing system may be configured to receive readings from the at least one occupancy sensor during a trial period; compare information derived from the readings to at least one threshold criterion to establish whether the one or more occupancy sensors reliably determined occupancy of an enclosure in which the control unit is installed during the trial period; and enable an away-state feature of the control unit if it is determined that the one or more occupancy sensors reliably determined occupancy of an enclosure during the trial period.
    Type: Application
    Filed: December 13, 2013
    Publication date: July 3, 2014
    Applicant: NEST LABS, INC.
    Inventors: Evan J. Fisher, Yoky Matsuoka
  • Patent number: 8766194
    Abstract: An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: July 1, 2014
    Assignee: Nest Labs Inc.
    Inventors: John Benjamin Filson, Eric B. Daniels, Brian Huppi
  • Publication number: 20140175181
    Abstract: A method of automated sensing of an electrical anomaly associated with a thermostat may include switching a switching circuit within the thermostat to an on state. The switching circuit may be configured to activate an HVAC function when switched to the on state. The method may also include monitoring one or more electrical properties associated with the switching circuit. The method may additionally include determining if an electrical anomaly is associated with the switching circuit based at least in part on the monitored one or more electrical properties. The method may further include switching the switching circuit to an off state if an electrical anomaly is detected.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 26, 2014
    Applicant: NEST LABS, INC.
    Inventors: Daniel Adam Warren, Brian J. Conner, Ian C. Smith
  • Patent number: 8757507
    Abstract: A thermostat for controlling an HVAC system and related systems, methods, and computer program products for facilitating user-friendly installation of the thermostat are described. For one embodiment, automated installation verification is performed by the thermostat by automatically sensing which wires have been inserted, selecting a candidate HVAC operating function (e.g., heating or cooling) that is consistent with a subset of HVAC signal types indicated by the inserted wires, applying control signals to the HVAC system to invoke that HVAC operating function, and processing a time sequence of acquired temperature readings to determine whether that HVAC operating function was successfully carried out. For one embodiment, the initial automated testing of the heating and cooling functions are only carried out at times for which such heating or cooling function would normally be invoked during normal operation of the thermostat. Automated determination of a heat pump call convention is also described.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: June 24, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Anthony Michael Fadell, Yoky Matsuoka, Matthew Lee Rogers, David Sloo, Michael Plitkins, Rangoli Sharan, Joseph Adam Ruff
  • Patent number: 8761946
    Abstract: The current application is directed to intelligent controllers that continuously, periodically, or intermittently calculate and display the time remaining until a control task is projected to be completed by the intelligent controller. In general, the intelligent controller employs multiple different models for the time behavior of one or more parameters or characteristics within a region or volume affected by one or more devices, systems, or other entities controlled by the intelligent controller. The intelligent controller collects data, over time, from which the models are constructed and uses the models to predict the time remaining until one or more characteristics or parameters of the region or volume reaches one or more specified values as a result of intelligent controller control of one or more devices, systems, or other entities.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: June 24, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Yoky Matsuoka, Rangoli Sharan, Mark D. Stefanski, Joseph Adam Ruff
  • Patent number: 8752771
    Abstract: A thermostat and related methods are described for controlling one or more functions, such as heating and cooling in an HVAC. According to some embodiments the thermostat includes a rechargeable battery; charging circuitry adapted and arranged to recharge the battery; and control circuitry adapted and arranged to control the one or more HVAC functions using power from the rechargeable battery. According to some embodiments, the thermostat also includes power harvesting circuitry adapted and arranged to harvest power from the HVAC system in cases where no common wire is available to the thermostat, and to supply power to the charging circuit for recharging the battery.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 17, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Daniel Adam Warren, Hugo Fiennes, Jonathan Alan Dutra, David Bell, Anthony Michael Fadell, Matthew Lee Rogers
  • Patent number: 8754775
    Abstract: A smoke alarm comprises smoke detection circuitry for detecting smoke and generating a detection signal responsive thereto. Proximity detection circuitry generates a proximity detection signal responsive to detection of an object within in a selected distance of the smoke alarm. Alarm generation circuitry generates an audible alarm responsive to the detection signal. The audible alarm may be deactivated for a predetermined period of time responsive to at least one proximity detection signal.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: June 17, 2014
    Assignee: Nest Labs, Inc.
    Inventor: Wayne T. Holcombe
  • Publication number: 20140158781
    Abstract: An Electronically-Controlled Register vent (ECRV) that can be easily installed by a homeowner or general handyman is disclosed. The ECRV can be used to convert a non-zoned HVAC system into a zoned system. The ECRV can also be used in connection with a conventional zoned HVAC system to provide additional control and additional zones not provided by the conventional zoned HVAC system. In one embodiment, the ECRV is configured have a size and form-factor that conforms to a standard manually-controlled register vent. In one embodiment, a zone thermostat is configured to provide thermostat information to the ECRV. In one embodiment, the zone thermostat communicates with a central monitoring system that coordinates operation of the heating and cooling zones.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Nest Labs, Inc.
    Inventor: Lawrence KATES
  • Publication number: 20140158782
    Abstract: An Electronically-Controlled Register vent (ECRV) that can be easily installed by a homeowner or general handyman is disclosed. The ECRV can be used to convert a non-zoned HVAC system into a zoned system. The ECRV can also be used in connection with a conventional zoned HVAC system to provide additional control and additional zones not provided by the conventional zoned HVAC system. In one embodiment, the ECRV is configured have a size and form-factor that conforms to a standard manually-controlled register vent. In one embodiment, a zone thermostat is configured to provide thermostat information to the ECRV. In one embodiment, the zone thermostat communicates with a central monitoring system that coordinates operation of the heating and cooling zones.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Nest Labs, Inc.
    Inventor: Lawrence KATES
  • Publication number: 20140158780
    Abstract: An Electronically-Controlled Register vent (ECRV) that can be easily installed by a homeowner or general handyman is disclosed. The ECRV can be used to convert a non-zoned HVAC system into a zoned system. The ECRV can also be used in connection with a conventional zoned HVAC system to provide additional control and additional zones not provided by the conventional zoned HVAC system. In one embodiment, the ECRV is configured have a size and form-factor that conforms to a standard manually-controlled register vent. In one embodiment, a zone thermostat is configured to provide thermostat information to the ECRV. In one embodiment, the zone thermostat communicates with a central monitoring system that coordinates operation of the heating and cooling zones.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Nest Labs, Inc.
    Inventor: Lawrence KATES
  • Patent number: D707245
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 17, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Timo A. Bruck, David Sloo, Clemens M. Knieper
  • Patent number: D709898
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Nest Labs, Inc.
    Inventors: David Sloo, Timo A. Bruck, James B. Simister, Fred Bould