Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source, such as a pupilometer and determining whether one of various pupillary response conditions is met.
Abstract: A computer program is disclosed for performing the following method: recording images of a response of a left pupil to a stimulus thereby resulting in a first set of sequential images; recording images of a response of a right pupil to the same stimulus at the same time as the first images were recorded, thereby resulting in a second set of sequential images; displaying on a display simultaneously the first set of images and the second set of image, wherein the two sets of images are synchronized, and wherein a center of the left pupil of each image from the first set of sequential images is aligned with a center of the right pupil from the second set of sequential images on the display.
Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source, such as a pupilometer and determining whether one of various pupillary response conditions is met.
Abstract: A computer program is disclosed for performing the following method: recording images of a response of a left pupil to a stimulus thereby resulting in a first set of sequential images; recording images of a response of a right pupil to the same stimulus at the same time as the first images were recorded, thereby resulting in a second set of sequential images; displaying on a display simultaneously the first set of images and the second set of image, wherein the two sets of images are synchronized, and wherein a center of the left pupil of each image from the first set of sequential images is aligned with a center of the right pupil from the second set of sequential images on the display.
Abstract: A computer program is disclosed for performing the following method: recording images of a response of a left pupil to a stimulus thereby resulting in a first set of sequential images; recording images of a response of a right pupil to the same stimulus at the same time as the first images were recorded, thereby resulting in a second set of sequential images; displaying on a display simultaneously the first set of images and the second set of image, wherein the two sets of images are synchronized, and wherein a center of the left pupil of each image from the first set of sequential images is aligned with a center of the right pupil from the second set of sequential images on the display.
Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source, such as a pupilometer and determining whether one of various pupillary response conditions is met.
Abstract: A system for use during a medical procedure. The system includes a pupilometer for obtaining data descriptive of one or more pupilary characteristics from an eye of a subject, and means for delivering a noxious stimulus. The means for delivering a noxious stimulus is in communication with the pupilometer and is activated by the pupilometer thereby sending a noxious stimulus to an anatomical structure of the patient.
Type:
Grant
Filed:
July 3, 2012
Date of Patent:
August 2, 2016
Assignee:
Neuroptics, Inc.
Inventors:
Lawrence W. Stark, Claudio Privitera, Kamran Siminou, Jeffrey Oliver
Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source, such as a pupilometer and determining whether one of various pupillary response conditions is met.
Abstract: A computer program is disclosed for performing the following method: recording images of a response of a left pupil to a stimulus thereby resulting in a first set of sequential images; recording images of a response of a right pupil to the same stimulus at the same time as the first images were recorded, thereby resulting in a second set of sequential images; displaying on a display simultaneously the first set of images and the second set of image, wherein the two sets of images are synchronized, and wherein a center of the left pupil of each image from the first set of sequential images is aligned with a center of the right pupil from the second set of sequential images on the display.
Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source, such as a pupilometer and determining whether one of various pupillary response conditions is met.
Abstract: A Pupillometer is disclosed. The Pupillometer has a display, an imaging apparatus that has a pupil finder and a microprocessor, and a memory in communication with the microprocessor. The display is sized to simultaneously display a video of y or more seconds in length of a left pupil and a video of y or more seconds in length of a right pupil. The pupil finder identifies the perimeter of a pupil. The imaging apparatus is capable of recording images of an individual's pupils at a rate of x image frames per second for a period of y or more seconds and playing back said image frames as a video at x image frames per second or at another rate that is faster or slower than x image frames per second.
Abstract: A method of screening a pupil of a subject to determine whether the pupil reflex resembles a canonical pupil reflex is disclosed. The method comprises the steps of stimulating the pupil with a stimulus source. The method further includes the steps of using a pupilometer to track the pupil's constriction response over a duration of time, wherein the step of tracking the pupil constriction response begins substantially simultaneously with or immediately subsequent to time 0 and lasts for a period of time y, and using the pupilometer to collect a plurality of data points in which each data point corresponds with a diameter of the pupil at a specific time within the time duration y. The method further includes the step of generating a pupil data profile by compiling the data points and determining whether one or more conditions arc met.
Abstract: A pupilometer that has image capturing means, a light source that emits light; and imaging software that processes image data obtained by the image capturing means and produces an output is described. The output comprises a single scalar value indicative of a neurological condition of a patient, wherein the scalar value can be applied to a scale indicative of a neurological condition. The image data comprises one or more components of the pupil's dynamic response to light emitted by the light source.
Type:
Grant
Filed:
February 12, 2010
Date of Patent:
August 7, 2012
Assignee:
Neuroptics, Inc.
Inventors:
Lawrence W. Stark, Claudio Privitera, Kamran Siminou, Jeffrey Oliver
Abstract: A Pupillometer is disclosed. The Pupillometer has a display, an imaging apparatus that has a pupil finder and a microprocessor, and a memory in communication with the microprocessor. The display is sized to simultaneously display a video of y or more seconds in length of a left pupil and a video of y or more seconds in length of a right pupil. The pupil finder identifies the perimeter of a pupil. The imaging apparatus is capable of recording images of an individual's pupils at a rate of x image frames per second for a period of y or more seconds and playing back said image frames as a video at x image frames per second or at another rate that is faster or slower than x image frames per second.
Abstract: An ophthalmic examination system comprising a headrest with a detection element, and an ophthalmic instrument (OI) having a microprocessor and a sensor in communication with the microprocessor. The sensor is configured to detect the presence of the detection element, and the headrest is configured for coupling to the OI.
Abstract: A pupilometer that has image capturing means, a light source that emits light; and imaging software that processes image data obtained by the image capturing means and produces an output is described. The output comprises a single scalar value indicative of a neurological condition of a patient, wherein the scalar value can be applied to a scale indicative of a neurological condition. The image data comprises one or more components of the pupil's dynamic response to light emitted by the light source.
Type:
Application
Filed:
February 12, 2010
Publication date:
August 5, 2010
Applicant:
Neuroptics, Inc.
Inventors:
Lawrence W. Stark, Claudio M. Privitera, Kamran Siminou, Jeffrey Oliver
Abstract: An ophthalmic examination system comprising a headrest with a detection element, and an ophthalmic instrument (OI) having a microprocessor and a sensor in communication with the microprocessor. The sensor is configured to detect the presence of the detection element, and the headrest is configured for coupling to the OI.
Abstract: A pupilometer having image capturing means, illumination means generating and emitting light of a first wavelength, stimulation means generating and emitting light of a second wavelength, and image processing software. The image processing software receives data from the image capturing means, identifies a pupil's dynamic response to light generated by the stimulation means, analyzes one or more components of the pupil's dynamic response, and produces an output comprising a value indicative of a neurological condition of a patient.
Type:
Grant
Filed:
April 4, 2006
Date of Patent:
March 2, 2010
Assignee:
Neuroptics, Inc.
Inventors:
Lawrence W. Stark, Claudio M. Privitera, Kamran Siminou, Jeffrey Oliver
Abstract: An ophthalmic examination system comprising a headrest with a detection element, and an ophthalmic instrument (OI) having a microprocessor and a sensor in communication with the microprocessor. The sensor is configured to detect the presence of the detection element, and the headrest is configured for coupling to the OI.
Abstract: A pupilometer having a pupil irregularity or non-uniformity detection capability. The pupilometer may comprise an imaging sensor for generating signals representative of a pupil of an eye, a data processor; and a program executable by the data processor for enabling the data processor to process signals received from the imaging sensor and to thereby identify one or more regions of non-uniformity within an image of a perimeter of the pupil. The pupilometer may incorporate several innovative calibration and thresholding routines and may provide the basis for an innovative medical diagnostics system, when coupled to a network containing a suitable medical database and data processing hardware.
Type:
Grant
Filed:
November 9, 2000
Date of Patent:
November 23, 2004
Assignee:
Neuroptics, Inc.
Inventors:
Lawrence W. Stark, Claudio M. Privitera, Kamran Siminou, Jeffrey Oliver