Patents Assigned to New Wave Research
  • Patent number: 8822882
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: September 2, 2014
    Assignee: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel J. Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20070248126
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: May 15, 2007
    Publication date: October 25, 2007
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20070046934
    Abstract: A system is described that combines an optical spectrometer and a particle analysis spectrometer for simultaneous and/or sequential analysis of a sample placed in a sample chamber. A laser resonator generates a light beam on the sample in the sample chamber to produce a plasma formation and an aerosol formation. The optical spectrometer (spectrophotometer) analyzes a plasma formation generated from the sample surface of the sample, qualifies and/or quantifies and records chemical data of the sample. The particle analysis spectrometer analyzes an aerosol formation generated from the sample in the sample chamber, and qualifies and/or quantifies and records data of the sample. The combination of the optical spectrometer and the particle analysis spectrometer in the system enables simultaneous and/or sequential analysis, qualification and/or quantification, and recording of the chemical and physical data derived from the transfer of laser energy into a solid, liquid or gas.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 1, 2007
    Applicant: New Wave Research, Inc.
    Inventor: John Roy
  • Patent number: 7169688
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: January 30, 2007
    Assignee: New Wave Research, Inc.
    Inventor: Kuo-Ching Liu
  • Publication number: 20060289411
    Abstract: A method for manufacturing applied to workpieces, such as large flat-panel liquid crystal displays (LCDs) and the like, including identifying and classifying targets on the workpiece, mounting workpiece on a stage, and controlling a laser to generate pulse of light on a single beam line that are adapted to the classification of the target. The laser includes a short pulse mode and a long pulse mode, and provides selectable wavelengths, which are adapted to particular operations on the target. The pulses of light are delivered in both of the first and second modes on the single beam line through an optical system to the targets on the workpiece.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 28, 2006
    Applicant: NEW WAVE RESEARCH
    Inventors: Jerry Chang, Peter Bull, Luther Nieh
  • Patent number: 7112518
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: September 26, 2006
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Patent number: 7052976
    Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: May 30, 2006
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Publication number: 20060027886
    Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: October 5, 2005
    Publication date: February 9, 2006
    Applicant: New Wave Research, Inc
    Inventor: Kuo-Ching Liu
  • Publication number: 20050279740
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 22, 2005
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Patent number: 6960813
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 1, 2005
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Patent number: 6960739
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 1, 2005
    Assignee: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20050215078
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: April 28, 2005
    Publication date: September 29, 2005
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Patent number: 6940888
    Abstract: A laser system includes a resonator having two gain modules generating pulses, coupled with intra-cavity polarization into a single beam line, using a single output coupler. A laser controller controls the laser heads to emit pulses in rapid succession, such as pulse pairs separated by a time interval of less than about 1 millisecond, and in some embodiments in a range from about zero (overlapping) to about 100 microseconds. Also a system adapted for metrology using particle image velocimetry PIV uses the resonator. For PIV, optics are provided in the output beam paths which expand the beam to form pulsed illumination sheets. A camera is used to capture images of the pulsed illumination sheets for analysis.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 6, 2005
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Publication number: 20050153525
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 14, 2005
    Applicant: New Wave Research
    Inventor: Kuo-Ching Liu
  • Publication number: 20050095819
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: December 14, 2004
    Publication date: May 5, 2005
    Applicant: New Wave Research
    Inventor: Kuo-Ching Liu
  • Publication number: 20040212027
    Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 28, 2004
    Applicant: NEW WAVE RESEARCH
    Inventor: Kuo-Ching Liu
  • Patent number: 6806544
    Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: October 19, 2004
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Publication number: 20040100999
    Abstract: A laser system includes a resonator having two gain modules generating pulses, coupled with intra-cavity polarization into a single beam line, using a single output coupler. A laser controller controls the laser heads to emit pulses in rapid succession, such as pulse pairs separated by a time interval of less than about 1 millisecond, and in some embodiments in a range from about zero (overlapping) to about 100 microseconds. Also a system adapted for metrology using particle image velocimetry PIV uses the resonator. For PIV, optics are provided in the output beam paths which expand the beam to form pulsed illumination sheets. A camera is used to capture images of the pulsed illumination sheets for analysis.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 27, 2004
    Applicant: NEW WAVE RESEARCH
    Inventor: Kuo-Ching Liu
  • Publication number: 20040087112
    Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Applicant: NEW WAVE RESEARCH
    Inventor: Kuo-Ching Liu
  • Publication number: 20040029362
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Application
    Filed: September 17, 2003
    Publication date: February 12, 2004
    Applicant: New Wave Research
    Inventor: Kuo-Ching Liu