Patents Assigned to New Wave Research
-
Patent number: 8822882Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.Type: GrantFiled: July 28, 2005Date of Patent: September 2, 2014Assignee: New Wave ResearchInventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel J. Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
-
Publication number: 20070248126Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.Type: ApplicationFiled: May 15, 2007Publication date: October 25, 2007Applicant: New Wave ResearchInventors: Kuo-Ching Liu, Pei Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
-
Publication number: 20070046934Abstract: A system is described that combines an optical spectrometer and a particle analysis spectrometer for simultaneous and/or sequential analysis of a sample placed in a sample chamber. A laser resonator generates a light beam on the sample in the sample chamber to produce a plasma formation and an aerosol formation. The optical spectrometer (spectrophotometer) analyzes a plasma formation generated from the sample surface of the sample, qualifies and/or quantifies and records chemical data of the sample. The particle analysis spectrometer analyzes an aerosol formation generated from the sample in the sample chamber, and qualifies and/or quantifies and records data of the sample. The combination of the optical spectrometer and the particle analysis spectrometer in the system enables simultaneous and/or sequential analysis, qualification and/or quantification, and recording of the chemical and physical data derived from the transfer of laser energy into a solid, liquid or gas.Type: ApplicationFiled: August 26, 2005Publication date: March 1, 2007Applicant: New Wave Research, Inc.Inventor: John Roy
-
Patent number: 7169688Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: GrantFiled: December 14, 2004Date of Patent: January 30, 2007Assignee: New Wave Research, Inc.Inventor: Kuo-Ching Liu
-
Publication number: 20060289411Abstract: A method for manufacturing applied to workpieces, such as large flat-panel liquid crystal displays (LCDs) and the like, including identifying and classifying targets on the workpiece, mounting workpiece on a stage, and controlling a laser to generate pulse of light on a single beam line that are adapted to the classification of the target. The laser includes a short pulse mode and a long pulse mode, and provides selectable wavelengths, which are adapted to particular operations on the target. The pulses of light are delivered in both of the first and second modes on the single beam line through an optical system to the targets on the workpiece.Type: ApplicationFiled: June 23, 2006Publication date: December 28, 2006Applicant: NEW WAVE RESEARCHInventors: Jerry Chang, Peter Bull, Luther Nieh
-
Patent number: 7112518Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: GrantFiled: December 14, 2004Date of Patent: September 26, 2006Assignee: New Wave ResearchInventor: Kuo-Ching Liu
-
Patent number: 7052976Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: GrantFiled: May 25, 2004Date of Patent: May 30, 2006Assignee: New Wave ResearchInventor: Kuo-Ching Liu
-
Publication number: 20060027886Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: October 5, 2005Publication date: February 9, 2006Applicant: New Wave Research, IncInventor: Kuo-Ching Liu
-
Publication number: 20050279740Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.Type: ApplicationFiled: July 28, 2005Publication date: December 22, 2005Applicant: New Wave ResearchInventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
-
Patent number: 6960813Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: GrantFiled: September 17, 2003Date of Patent: November 1, 2005Assignee: New Wave ResearchInventor: Kuo-Ching Liu
-
Patent number: 6960739Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.Type: GrantFiled: March 6, 2003Date of Patent: November 1, 2005Assignee: New Wave ResearchInventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
-
Publication number: 20050215078Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.Type: ApplicationFiled: April 28, 2005Publication date: September 29, 2005Applicant: New Wave ResearchInventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
-
Patent number: 6940888Abstract: A laser system includes a resonator having two gain modules generating pulses, coupled with intra-cavity polarization into a single beam line, using a single output coupler. A laser controller controls the laser heads to emit pulses in rapid succession, such as pulse pairs separated by a time interval of less than about 1 millisecond, and in some embodiments in a range from about zero (overlapping) to about 100 microseconds. Also a system adapted for metrology using particle image velocimetry PIV uses the resonator. For PIV, optics are provided in the output beam paths which expand the beam to form pulsed illumination sheets. A camera is used to capture images of the pulsed illumination sheets for analysis.Type: GrantFiled: November 21, 2002Date of Patent: September 6, 2005Assignee: New Wave ResearchInventor: Kuo-Ching Liu
-
Publication number: 20050153525Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: December 14, 2004Publication date: July 14, 2005Applicant: New Wave ResearchInventor: Kuo-Ching Liu
-
Publication number: 20050095819Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: December 14, 2004Publication date: May 5, 2005Applicant: New Wave ResearchInventor: Kuo-Ching Liu
-
Publication number: 20040212027Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: May 25, 2004Publication date: October 28, 2004Applicant: NEW WAVE RESEARCHInventor: Kuo-Ching Liu
-
Patent number: 6806544Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: GrantFiled: November 5, 2002Date of Patent: October 19, 2004Assignee: New Wave ResearchInventor: Kuo-Ching Liu
-
Publication number: 20040100999Abstract: A laser system includes a resonator having two gain modules generating pulses, coupled with intra-cavity polarization into a single beam line, using a single output coupler. A laser controller controls the laser heads to emit pulses in rapid succession, such as pulse pairs separated by a time interval of less than about 1 millisecond, and in some embodiments in a range from about zero (overlapping) to about 100 microseconds. Also a system adapted for metrology using particle image velocimetry PIV uses the resonator. For PIV, optics are provided in the output beam paths which expand the beam to form pulsed illumination sheets. A camera is used to capture images of the pulsed illumination sheets for analysis.Type: ApplicationFiled: November 21, 2002Publication date: May 27, 2004Applicant: NEW WAVE RESEARCHInventor: Kuo-Ching Liu
-
Publication number: 20040087112Abstract: A method and system for cutting a wafer comprising a conductive substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the conductive substrate using a solid-state laser. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: November 5, 2002Publication date: May 6, 2004Applicant: NEW WAVE RESEARCHInventor: Kuo-Ching Liu
-
Publication number: 20040029362Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.Type: ApplicationFiled: September 17, 2003Publication date: February 12, 2004Applicant: New Wave ResearchInventor: Kuo-Ching Liu