Patents Assigned to Newport Fab
  • Patent number: 10586870
    Abstract: A structure includes channel regions located between source/drain regions, and a polysilicon gate structure including a plurality of gate fingers, each extending over a corresponding channel region. Each gate finger includes first and second rectangular portions extending in parallel with a first axis, and a connector portion that introduces an offset between the first and second rectangular portions along a second axis. This offset causes each source/drain region to have a first section with a first length along the second axis, and a second section with a second length along the second axis, greater than the first length. A single column of contacts having a first width along the second axis is provided in the first section of each source/drain region, and a single column of contacts having a second width along the second axis, greater than the first width, is provided in the second section of each source/drain region.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 10, 2020
    Assignee: Newport Fab, LLC
    Inventors: Roda Kanawati, Paul D. Hurwitz
  • Patent number: 10587114
    Abstract: A bi-directional ESD protection device for an RF circuit that utilizes two pre-driver FETs to reliably maintain the gate voltage of a ggNMOS-type main transistor the lowest applied voltage (e.g., 0V) in order to maximize the main transistor's drain-to-source breakdown voltage, which determines the trigger voltage of the ESD protection device. One pre-driver FET couples the main transistor's gate to ground during positive voltage input signal phases, and the other pre-driver FET couples the main transistor's gate to the input signal path during negative voltage input signal phases. While the amplitude of the input signals remains below the main transistor's trigger voltage, the main transistor remains completely turned off, whereby the input signals are passed to I/O circuitry with minimal interference. Whenever the input signal exceeds the trigger voltage, the main transistor turns on to shunt the over-voltage/current to ground, thereby protecting the I/O circuitry.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: March 10, 2020
    Assignee: Newport Fab, LLC
    Inventors: Roda Kanawati, Samir Chaudhry
  • Patent number: 10587233
    Abstract: An RF switch includes series-connected transistors having different threshold voltages, breakdown voltages and on-resistances, without relying on different channel lengths to provide these differences. A first set of transistors located near a power amplifier output are fabricated to have first channel regions with relatively high dopant concentrations. A second set of transistors located near an antenna input, are fabricated to have second channel regions with relatively low dopant concentrations. The first set of transistors can also include halo implants to increase the dopant concentrations in the first channel regions. Lightly doped drain (LDD) regions of the first set of transistors can have a lower dopant concentration (and be shallower) than LDD regions of the second set of transistors. Transistors in the first set have a relatively high on-resistance, a relatively high breakdown voltage and a relatively high threshold voltage, when compared with transistors in the second set.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: March 10, 2020
    Assignee: Newport Fab, LLC
    Inventors: Paul D. Hurwitz, Roda Kanawati
  • Patent number: 10566528
    Abstract: A radio frequency (RF) switch includes a heating element, a phase-change material (PCM) situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM. The heating element can have a heater line underlying an active segment of the PCM. Alternatively, the heating element can have a split heater lines underlying an active segment of the PCM. The split heater lines increase an area of the active segment of the PCM and reduce a heater-to-PCM parasitic capacitance. A fan-out structure having fan-out metal can connect the heater line to a heater contact. The fan-out structure reduces heat generation outside the active segment of the PCM and reduces a heater contact-to-PCM parasitic capacitance. The fan-out structure can have dielectric segments interspersed between the fan-out metal to reduce dishing.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 18, 2020
    Assignee: Newport Fab, LLC
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Michael J. DeBar, Jefferson E. Rose, David J. Howard
  • Patent number: 10566321
    Abstract: In a method for wafer-to-wafer bonding, an integrated circuit (IC) wafer and a phase-change material (PCM) switch wafer are provided. The IC includes at least one active device, and has an IC substrate side and a metallization side. The PCM switch wafer has a heat spreading side and a radio frequency (RF) terminal side. A heat spreader is formed in the PCM switch wafer. In one approach, the heat spreading side of the PCM switch wafer is bonded to the metallization side of the IC wafer, then a heating element is formed between the heat spreader and a PCM in the PCM switch wafer. In another approach, a heating element is formed between the heat spreader and a PCM in the PCM switch wafer, then the RF terminal side of the PCM switch wafer is bonded to the metallization side of the IC wafer.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 18, 2020
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, David J. Howard
  • Patent number: 10535820
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD). and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: January 14, 2020
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Patent number: 10536124
    Abstract: A power stage includes a power stage amplifier, selectable matching networks, and phase-change material (PCM) radio frequency (RF) switches. Each of the PCM RF switches includes a heating element transverse to a PCM, the heating element approximately defining an active segment of the PCM. A power stage amplifier output is connected to the PCM RF switches. Each of the PCM RF switches is connected to one of the selectable matching networks. A power stage amplifier output is coupled to or decoupled from one of the selectable matching networks by one of the PCM RF switches. In one approach, the power stage is included in a power amplifier module of a communications device. The power amplifier module further includes a bias and match controller that biases the power stage amplifier, and that uses one of the PCM RF switches to couple or decouple the power stage amplifier output.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 14, 2020
    Assignee: Newport Fab, LLC
    Inventors: Chris Masse, Nabil El-Hinnawy, Gregory P. Slovin, David J. Howard
  • Patent number: 10529836
    Abstract: A thin Ge layer is formed between an SiGe intrinsic base and single-crystal Si extrinsic base structures to greatly simplify the fabrication of raised-base SiGe heterojunction bipolar transistors (HBTs). The fabrication process includes sequentially depositing the SiGe intrinsic base, the Ge, and Si extrinsic base layers as single-crystal structures over a patterned silicon wafer while the wafer is maintained inside a reaction chamber. The Ge layer subsequently functions as an etch stop, and protects the crystallinity of the underlying SiGe intrinsic base material during subsequent dry etching of the Si extrinsic base layer, which is performed to generate an emitter window. A wet etch then removes residual Ge from the emitter window to expose a contact portion of the SiGe layer surface without damage. A polysilicon emitter structure is formed in the emitter window, and then salicide is formed over the base stacks to encapsulate the SiGe and Ge structures.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: January 7, 2020
    Assignee: Newport Fab, LLC
    Inventor: Edward J. Preisler
  • Patent number: 10530357
    Abstract: A high power semiconductor switch including a plurality of transistor switch circuits connected in series between first and second ports. A first set of transistor switch circuits is located immediately adjacent to the first port, a second set of transistor switch circuits is located immediately adjacent to the second port, and a third set of transistor switch structures are located between the first and second sets. Each transistor switch circuit of the first and second set includes a switching transistor and a dynamic impedance circuit, wherein the dynamic impedance circuit reduces the effective impedance of the corresponding switching transistor when an RF signal is being transmitted. The dynamic impedance circuits are designed to reduce and equalize the voltage drops across the switching transistors of the first and second sets.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 7, 2020
    Assignee: Newport Fab, LLC
    Inventors: Roda Kanawati, Paul D. Hurwitz
  • Patent number: 10529922
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD), and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: January 7, 2020
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Patent number: 10475993
    Abstract: In fabricating a radio frequency (RF) switch, a heat spreader is provided and a heating element is deposited. A thermally conductive and electrically insulating material is deposited over the heating element. The heating element and the thermally conductive and electrically insulating material are patterned, where the thermally conductive and electrically insulating material is self-aligned with the heating element. A layer of an upper dielectric is deposited. A conformability support layer is optionally deposited over the upper dielectric and the thermally conductive and electrically insulating material. A phase-change material is deposited over the optional conformability support layer and the underlying upper dielectric and the thermally conductive and electrically insulating material.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 12, 2019
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, Jefferson E. Rose, David J. Howard, Michael J. DeBar, Nabil El-Hinnawy
  • Patent number: 10476001
    Abstract: In manufacturing a radio frequency (RF) switch, a heat spreader is provided. A first dielectric is deposited over the heat spreader. A trench is etched in the first dielectric. A heating element is deposited in the trench and over at least a portion of the first dielectric. A thermally conductive and electrically insulating material is deposited over at least the heating element, where the thermally conductive and electrically insulating material is self-aligned with the heating element. A conformability support layer is optionally deposited over the thermally conductive and electrically insulating material and the first dielectric. A phase-change material is deposited over the optional conformability support layer and the underlying thermally conductive and electrically insulating material and the first dielectric.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 12, 2019
    Assignee: Newport Fab, LLC
    Inventors: Jefferson E. Rose, Gregory P. Slovin, David J. Howard, Michael J. DeBar, Nabil El-Hinnawy
  • Patent number: 10469035
    Abstract: A single-stage amplifier circuit includes first and second transistors (e.g., BJTs or FETs) connected in parallel between the amplifier's input and output nodes. The first and second transistors are configured differently using known fabrication techniques such that a (first) cutoff frequency of the first transistor is at least 1.5 times greater than a (second) cutoff frequency of the second transistor, and such that a ratio of the respective cutoff frequencies produces a significant cancellation of second derivative transconductance (Gm?) in the amplifier output signal, whereby the amplifier achieves significantly improved IIP3. Alternatively, the amplifier is configured using MOSFETs having respective different channel lengths to achieve the desired cutoff frequency ratio.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: November 5, 2019
    Assignee: Newport Fab, LLC
    Inventors: Jie Zheng, Samir Chaudhry, Edward J. Preisler
  • Patent number: 10469121
    Abstract: A non-linear shunt circuit is coupled in a shunt-type configuration (e.g., parallel to an RF switch shunt branch) between a main signal line and ground in an RF circuit, and includes a harmonic cancellation element (HCE) (e.g., back-to-back diodes or diode-connected FETs) configured to cancel third harmonics generated on the main signal line by operation of an RF switch. The RF switch includes a series branch made up of multiple FETs coupled in series in the main signal line between a transmitter/receiver circuit and an antenna. The HCE is coupled to the main signal line either by way of a mid-point node or an input/output terminal of the RF switch's series branch. The non-linear shunt circuit also includes optional protection circuits that provide frequency-independent impedance through the HCE. Various techniques (e.g., active biasing) are optionally utilized to increase effectiveness to a wider range of the switch input power levels.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 5, 2019
    Assignee: Newport Fab, LLC
    Inventors: Paul D. Hurwitz, Roda Kanawati
  • Patent number: 10461253
    Abstract: A radio frequency (RF) switch includes a heating element, a nugget, a phase-change material (PCM), and input/output contacts. The nugget comprises thermally conductive and electrically insulating material, and is situated on top of the heating element. The PCM has an active segment approximately situated over the nugget, and passive segments approximately situated under the input/output contacts. The PCM RF switch may include thermally resistive material adjacent to first and second sides of the heating element, and/or adjacent to first and second sides of the nugget. The PCM RF switch may include a heat valve under the heating element.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 29, 2019
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, David J. Howard, Jefferson E. Rose, Michael J. DeBar, Nabil El-Hinnawy
  • Patent number: 10454027
    Abstract: A radio frequency (RF) switch includes a stressed phase-change material (PCM) and a heating element underlying an active segment of the stressed PCM and extending outward and transverse to the stressed PCM. In one approach, at least one transition layer is situated over the stressed PCM. An encapsulation layer is situated over the at least one transition layer and on first and second sides of the stressed PCM. A stressor layer is situated over the encapsulation layer and the said stressed PCM. Alternatively or additionally, contacts of the RF switch extend into passive segments of a PCM, wherein adhesion layers adhere the passive segments of the PCM to the contacts.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 22, 2019
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Jefferson E. Rose, Gregory P. Slovin, Nabil El-Hinnawy
  • Patent number: 10347625
    Abstract: Methods for providing improved isolation structures in a SiGe BiCMOS process are provided. In one method, an n-type epitaxial layer is grown over a p-type high-resistivity substrate. A mask covers a first region, and exposes a second region, of the epitaxial layer. A p-type impurity is implanted through the mask, counter-doping the second region to become slightly p-type. Shallow trench isolation and optional deep trench isolation regions are formed through the counter-doped second region, providing an isolation structure. The first region of the epitaxial layer forms a collector region of a heterojunction bipolar transistor. In another method, shallow trenches are etched partially into the epitaxial layer through a mask. A p-type impurity is implanted through the mask, thereby counter-doping thin exposed regions of the epitaxial layer to become slightly p-type. The shallow trenches are filled with dielectric material and a CMP process is performed to form shallow trench isolation regions.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 9, 2019
    Assignee: Newport Fab, LLC
    Inventors: Kurt A. Moen, Edward J. Preisler, Paul D. Hurwitz
  • Patent number: 10325907
    Abstract: Methods and structures for improved isolation in a SiGe BiCMOS process or a CMOS process are provided. In one method, shallow trench isolation (STI) regions are formed in a first semiconductor region located over a semiconductor substrate. Dummy active regions of the first semiconductor region extend through the STI regions to an upper surface of the first semiconductor region. A grid of deep trench isolation (DTI) regions is also formed in the first semiconductor region, wherein the DTI regions extend entirely through the first semiconductor region. The grid of DTI regions includes a pattern that exhibits only T-shaped or Y-shaped intersections. The pattern defines a plurality of openings, wherein a dummy active region is located within each of the openings.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 18, 2019
    Assignee: Newport Fab, LLC dba Jazz Semiconductor, Inc.
    Inventors: Kurt A. Moen, Edward J. Preisler, Paul D. Hurwitz
  • Patent number: 10325833
    Abstract: A semiconductor structure includes a plurality of source/drain regions, a plurality of channel/body regions located between the source/drain regions, and a polysilicon gate structure located over the plurality of channel/body regions. The polysilicon gate structure includes a plurality of polysilicon gate fingers, each extending over a corresponding one of the channel/body regions. Each polysilicon gate finger includes first and second rectangular portions that extend in parallel with a first axis, and a connector portion that introduces an offset between the first and second rectangular portions along the first axis. This offset results in each source/drain region having a first section with a first length, and a second section with a second length, greater than the first length. A single column of contacts are provided in the first section of each source/drain region, and multiple columns of contacts are provided in the second section of each source/drain region.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 18, 2019
    Assignee: Newport Fab, LLC
    Inventors: Roda Kanawati, Paul D. Hurwitz, Samir Chaudhry
  • Patent number: 10319716
    Abstract: Methods and structures for improved isolation in a SiGe BiCMOS process or a CMOS process are provided. In one method, shallow trench isolation (STI) regions are formed in a first semiconductor region located over a semiconductor substrate. Dummy active regions of the first semiconductor region extend through the STI regions to an upper surface of the first semiconductor region. A grid of deep trench isolation (DTI) regions is also formed in the first semiconductor region, wherein the DTI regions extend entirely through the first semiconductor region. The grid of DTI regions includes a pattern that exhibits only T-shaped or Y-shaped intersections. The pattern defines a plurality of openings, wherein a dummy active region is located within each of the openings.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 11, 2019
    Assignee: Newport Fab, LLC
    Inventors: Kurt A. Moen, Edward J. Preisler, Paul D. Hurwitz