Patents Assigned to Nippon Hoso Kyokai
  • Patent number: 12015789
    Abstract: An encoding device 1 includes: a merge predictor 181a configured to generate area prediction images using motion vectors of a plurality of divided areas obtained by dividing an encoding-target block and merge areas at boundaries of a plurality of the generated area prediction images through weighted averaging to generate a prediction block of the encoding-target block: and a filter controller 161 configured to control the deblocking filter based on a position of a merged area merged by the merge predictor 181a through the weighted averaging.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: June 18, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Publication number: 20240195992
    Abstract: A method includes: decoding a bitstream and thereby outputting a transform coefficients for each color component of the block, a first flag indicating for each color component whether the block includes a non-zero transform coefficient, and a second flag indicating whether the block has been encoded using a color space transform that transforming a color space of a prediction residual from a color space of the original image to another color space; performing a color space inverse transform for the prediction residual restored from the transform coefficients, when the second flag indicates that the block has been encoded using the color space transform; and determining whether to perform chroma residual scaling for the prediction residual of the chrominance component, based on the first flag of a chrominance component and the second flag, the chroma residual scaling that performs scaling based on a luminance component corresponding to the chrominance component.
    Type: Application
    Filed: January 23, 2024
    Publication date: June 13, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Shimpei NEMOTO, Atsuro ICHIGAYA
  • Patent number: 11997262
    Abstract: An intra prediction device performing intra prediction on a luminance block and a chrominance block includes: a chrominance candidate specifier configured to specify a mode number of an intra prediction mode applied to the luminance block corresponding to the chrominance block as one of candidates for an intra prediction mode to be applied to the chrominance block; and a chrominance prediction mode converter configured to convert the mode number before conversion specified by the chrominance candidate specifier using a conversion table and output a mode number after conversion. In the conversion table, for directional prediction, a given number of mode numbers in ascending order of the mode number among the mode numbers before conversion are associated with a given number of mode numbers in descending order of the mode number among the mode numbers after conversion.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: May 28, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Patent number: 11991356
    Abstract: A deblocking filter control device that controls a deblocking filter process performed on a decoded image includes: a parameter deriver configured to derive a parameter value that controls a filter strength in the deblocking filter process; and a parameter transformer configured to output a transformed parameter value by transforming the parameter value based on an input bit depth that is a bit depth of the video signal, wherein when the input bit depth is smaller than a predetermined bit depth, the parameter transformer is configured to output the transformed parameter value by adding an offset value to the parameter value and making a bit shift of a result of the addition, and the parameter transformer is configured to change the offset value based on the input bit depth.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: May 21, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Shimpei Nemoto, Atsuro Ichigaya
  • Patent number: 11991370
    Abstract: An intra predictor (181) for performing intra prediction on each of blocks obtained by dividing an original image in the form of a frame, the intra predictor (181) includes; a linear model calculator (1811a) configured to calculate a linear model of the luminance component and the chroma component of the target block using decoded pixel values of the luminance component and decoded pixel values of the chroma component around the target block on which the intra prediction is performed; a chroma component predictor (1811b) configured to predict pixel values of the chroma component of the target block by applying the linear model calculated by the linear model calculator (1811a) to decoded pixel values of a luminance component of the target block; and a chroma component corrector (1812) configured to correct predicted pixel values of the chroma component obtained by the chroma component predictor (1811b) using decoded pixel values that were not used to calculate a linear model by the linear model calculator (181
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: May 21, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Patent number: 11991367
    Abstract: An image encoding device (1) according to a first feature encodes blocks obtained by dividing an original image of a frame included in a video. The image encoding device (1) includes a code amount allocator (180) configured to allocate a code amount to each of a plurality of intra prediction modes defined in advance, a mode selector (171) configured to select an intra prediction mode to be applied to a target block of intra prediction from among the plurality of intra prediction modes, and an encoder (130) configured to encode identification information indicating the selected intra prediction mode in accordance with the allocated code amount. The code amount allocator (180) calculates a feature amount of a plurality of reference pixels adjacent to the target block and changes a manner of allocation of code amounts to the plurality of intra prediction modes based on the calculated feature amount.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: May 21, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shimpei Nemoto, Shunsuke Iwamura, Atsuro Ichigaya
  • Publication number: 20240129470
    Abstract: An encoding device encodes each encoding-target block.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 18, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Shimpei NEMOTO, Atsuro ICHIGAYA
  • Patent number: 11963433
    Abstract: The present invention provides an organic electroluminescence device capable of having not only a device lifetime comparable to that of an existing organic electroluminescence device but also a small thickness of smaller than 10 ?m and excellent flexibility. The present invention relates to an organic electroluminescence device having a structure including: an anode; a cathode on a substrate; and a laminate of multiple layers between the anode and the cathode, the device having a thickness of smaller than 10 ?m.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: April 16, 2024
    Assignees: The University of Tokyo, Nippon Hoso Kyokai, Nippon Shokubai Co., Ltd.
    Inventors: Takao Someya, Tomoyuki Yokota, Hirohiko Fukagawa, Takahisa Shimizu, Katsuyuki Morii, Tsuyoshi Goya, Kenji Kuwada
  • Publication number: 20240121428
    Abstract: A prediction image correcting device comprises a predictor (108) configured to predict a target image block obtained by dividing a present image frame by using a plurality of reference images to generate a prediction image corresponding to the target image block a prediction accuracy evaluator (109) configured to evaluate prediction accuracy of the prediction image based on a degree of similarity between the plurality of reference images used for generating the prediction image and a corrector (110) configured to perform correction processing on the prediction image by using a decoded neighboring block adjacent to the target image block, wherein the corrector is configured to control the correction processing based at least on an evaluation result of the prediction accuracy evaluator.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 11, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Patent number: 11936885
    Abstract: A method includes: decoding a bitstream and thereby outputting a transform coefficients for each color component of the block, a first flag indicating for each color component whether the block includes a non-zero transform coefficient, and a second flag indicating whether the block has been encoded using a color space transform that transforming a color space of a prediction residual from a color space of the original image to another color space; performing a color space inverse transform for the prediction residual restored from the transform coefficients, when the second flag indicates that the block has been encoded using the color space transform; and determining whether to perform chroma residual scaling for the prediction residual of the chrominance component, based on the first flag of a chrominance component and the second flag, the chroma residual scaling that performs scaling based on a luminance component corresponding to the chrominance component.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: March 19, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Shimpei Nemoto, Atsuro Ichigaya
  • Publication number: 20240080476
    Abstract: An image encoding device 1 that encodes an encoding target block obtained by dividing an image, the image encoding device including: an intra predictor 172 configured to predict the encoding target block through intra prediction to generate a prediction block; and a transformer 121 configured to perform orthogonal transform processing on a prediction residual representing an error of the prediction block with respect to the encoding target block. The intra predictor includes: a weighted controller 172c configured to control the weighted combining processing dependent on positions of prediction pixels within the prediction block based on a type of transform to be applied in the orthogonal transform processing in the transformer; and a corrector 172b configured to correct the prediction pixels by performing the weighted combining processing on reference pixels adjacent to the encoding target block and the prediction pixels.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20240073443
    Abstract: A prediction image correcting device comprises a predictor (108) configured to predict a target image block obtained by dividing a present image frame by using a plurality of reference images to generate a prediction image corresponding to the target image block a prediction accuracy evaluator (109) configured to evaluate prediction accuracy of the prediction image based on a degree of similarity between the plurality of reference images used for generating the prediction image and a corrector (110) configured to perform correction processing on the prediction image by using a decoded neighboring block adjacent to the target image block, wherein the corrector is configured to control the correction processing based at least on an evaluation result of the prediction accuracy evaluator.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20240048690
    Abstract: An image encoding device for block-dividing and encoding an original image of a frame unit constituting a moving image is disclosed that includes a predictor circuitry configured to generate a predicted image, a weighted average processor configured to generate a block of a new predicted image, a prediction residual signal generator circuitry configured to calculate an error of each prediction signal of the block of the predicted image and to generate a prediction residual signal, a sub-block divider circuitry configured to divide the prediction residual signal configured to divide the predict residual signal, and a transformation selection applier circuitry configured to selectively apply a plurality of types of transformation processes for a divided sub-block of the prediction residual signal.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shinichi SAKAIDA
  • Publication number: 20240040128
    Abstract: An image encoding device (1) includes a motion compensation predictor (109) configured to generate a prediction image corresponding to a target image by performing motion compensation prediction using a plurality of reference images, and an evaluator (111) configured to evaluate prediction accuracy of the prediction image for each image portion including one or more pixels by calculating a degree of similarity between the plurality of reference images for each image portion.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 1, 2024
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Atsuro ICHIGAYA, Shunsuke IWAMURA, Shimpei NEMOTO, Kazuhisa IGUCHI
  • Patent number: 11889031
    Abstract: An encoding device encodes each encoding-target block.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: January 30, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Shimpei Nemoto, Atsuro Ichigaya
  • Patent number: 11877003
    Abstract: A prediction image correcting device comprises a predictor (108) configured to predict a target image block obtained by dividing a present image frame by using a plurality of reference images to generate a prediction image corresponding to the target image block a prediction accuracy evaluator (109) configured to evaluate prediction accuracy of the prediction image based on a degree of similarity between the plurality of reference images used for generating the prediction image and a corrector (110) configured to perform correction processing on the prediction image by using a decoded neighboring block adjacent to the target image block, wherein the corrector is configured to control the correction processing based at least on an evaluation result of the prediction accuracy evaluator.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: January 16, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Patent number: 11877021
    Abstract: A transmitting device (30, 30a) is configured to transmit, to a receiving device (40, 40a), a plurality of video signals captured from different positions, the plurality of video signals being grouped by a plurality of groups depending on imaging positions at which the video signals are captured. The transmitting device (30, 30a) comprises: a controller (32) configured to assign an ID for identifying each of the plurality of groups; and a communication interface (37) configured to transmit a video signal to which the ID is assigned, to the receiving device (40, 40a).
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: January 16, 2024
    Assignee: NIPPON HOSO KYOKAI
    Inventor: Shuichi Aoki
  • Patent number: 11849145
    Abstract: An image encoding device 1 that encodes an encoding target block obtained by dividing an image, the image encoding device including: an intra predictor 172 configured to predict the encoding target block through intra prediction to generate a prediction block; and a transformer 121 configured to perform orthogonal transform processing on a prediction residual representing an error of the prediction block with respect to the encoding target block. The intra predictor includes: a weighted controller 172c configured to control the weighted combining processing dependent on positions of prediction pixels within the prediction block based on a type of transform to be applied in the orthogonal transform processing in the transformer; and a corrector 172b configured to correct the prediction pixels by performing the weighted combining processing on reference pixels adjacent to the encoding target block and the prediction pixels.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: December 19, 2023
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Patent number: 11849141
    Abstract: A prediction image correcting device comprises a predictor (108) configured to predict a target image block obtained by dividing a present image frame by using a plurality of reference images to generate a prediction image corresponding to the target image block a prediction accuracy evaluator (109) configured to evaluate prediction accuracy of the prediction image based on a degree of similarity between the plurality of reference images used for generating the prediction image and a corrector (110) configured to perform correction processing on the prediction image by using a decoded neighboring block adjacent to the target image block, wherein the corrector is configured to control the correction processing based at least on an evaluation result of the prediction accuracy evaluator.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: December 19, 2023
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shimpei Nemoto
  • Patent number: 11843766
    Abstract: An image encoding device for block-dividing and encoding an original image of a frame unit constituting a moving image is disclosed that includes a predictor circuitry configured to generate a predicted image, a weighted average processor configured to generate a block of a new predicted image, a prediction residual signal generator circuitry configured to calculate an error of each prediction signal of the block of the predicted image and to generate a prediction residual signal, a sub-block divider circuitry configured to divide the prediction residual signal configured to divide the predict residual signal, and a transformation selection applier circuitry configured to selectively apply a plurality of types of transformation processes for a divided sub-block of the prediction residual signal.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: December 12, 2023
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shinichi Sakaida