Patents Assigned to Nippon Hoso Kyokai
  • Publication number: 20210243474
    Abstract: An encoding device 1 includes: a transformer 13 configured to calculate an orthogonal transform coefficient by performing an orthogonal transformation process on a residual image indicating a difference between the input image and a predicted image of the input image; a quantizer 14 configured to generate quantization coefficient by quantizing the orthogonal transform coefficient based on a quantization parameter; an entropy encoder 24 configured to generate encoded data by encoding the quantization coefficient; an image decoder 10 configured to restore an orthogonal transform coefficient from the quantization coefficient based on the quantization parameter and generate a pre-filtering image by adding the predicted image to a residual image restored by performing inverse orthogonal transformation on the orthogonal transform coefficient; and a deblocking filter 18 configured to perform a filtering process on the pre-filtering image and control a filtering strength depending on a result of comparison between a
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Atsuro ICHIGAYA, Shunsuke IWAMURA, Shimpei NEMOTO, Kazuhisa IGUCHI
  • Publication number: 20210235081
    Abstract: An image encoding device that divides an image into blocks and encodes on each of the blocks, the image encoding device includes: a sub-area divider configured to divide a target block to be encoded into a plurality of sub-areas; a reference direction determiner configured to determine a reference direction that indicates in which direction an encoded block to be referenced is located among encoded blocks around the target block; a motion vector deriver configured to derive a motion vector for each of the sub-areas by referencing a motion vector applied in inter prediction of an encoded block located in the determined reference direction; and a prediction image generator configured to generate a prediction image on the target block by performing inter prediction on each of the sub-areas by using the derived motion vector. The image encoding device configured to encode reference direction information that indicates the determined reference direction, and output a stream.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 29, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Patent number: 11076149
    Abstract: Video coding according to the disclosure of the present application includes generating a predictive signal of a target object either by means of intra-prediction or inter-prediction. The generated predictive signal of the target object then undergoes filtering to smooth out a transition of pixel signals from a neighboring block to the target block. In the disclosure of the present application, the filtering is performed only when the filtering is necessary. A parameter indicating whether to execute or not to execute the filtering is sent from the encoder to the decoder. The present application also discloses provision of multiple types of transformation processes. A selection signal is used to select one type of transformation process from the multiple types of transformation processes. Alternatively, one type of transformation process is selected according to whether to execute or not to execute the filtering.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: July 27, 2021
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Atsuro Ichigaya, Shinichi Sakaida
  • Publication number: 20210176495
    Abstract: An image encoding device (1) includes the cross-component intra predictor (171a) generates a predicted chroma block through cross-component intra prediction in which a chroma block to be encoded is predicted by referring to, as the neighbouring decoded pixels adjacent to the chroma block, decoded luminance pixels and decoded chroma pixels, a candidate generator (181) configured to generate candidates for an orthogonal transform type to be applied to orthogonal transform processing on prediction residuals that represent errors between the predicted chroma block and the chroma block; and a transformer (121) configured to perform the orthogonal transform processing on the chroma prediction residuals by using an orthogonal transform type selected from among the candidates generated by the candidate generator (181).
    Type: Application
    Filed: February 12, 2021
    Publication date: June 10, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20210176466
    Abstract: An encoding device (1) according to the present invention includes: an encoding processing order determiner (11) configured to determine encoding processing order of blocks to be encoded; an intra-prediction mode candidate generator (12) configured to generate intra-prediction mode candidates of the blocks to be encoded, based on the encoding processing order; an intra-prediction mode determiner (13) configured to determine intra-prediction modes to be applied to the blocks to be encoded from the intra-prediction mode candidates; an intra predictor (14) configured to perform intra-prediction processing on the blocks to be encoded, based on the determined encoding processing order and the intra-prediction modes; and an entropy encoder (15) configured to perform entropy encoding processing on the encoding processing order and the intra-prediction modes.
    Type: Application
    Filed: February 18, 2021
    Publication date: June 10, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Shimpei NEMOTO, Atsuro ICHIGAYA
  • Publication number: 20210168375
    Abstract: An intra predictor (181) for performing intra prediction on each of blocks obtained by dividing an original image in the form of a frame, the intra predictor (181) includes; a linear model calculator (1811a) configured to calculate a linear model of the luminance component and the chroma component of the target block using decoded pixel values of the luminance component and decoded pixel values of the chroma component around the target block on which the intra prediction is performed; a chroma component predictor (1811b) configured to predict pixel values of the chroma component of the target block by applying the linear model calculated by the linear model calculator (1811a) to decoded pixel values of a luminance component of the target block; and a chroma component corrector (1812) configured to correct predicted pixel values of the chroma component obtained by the chroma component predictor (1811b) using decoded pixel values that were not used to calculate a linear model by the linear model calculator (181
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20210021862
    Abstract: A prediction image correcting device comprises a predictor (108) configured to predict a target image block obtained by dividing a present image frame by using a plurality of reference images to generate a prediction image corresponding to the target image block a prediction accuracy evaluator (109) configured to evaluate prediction accuracy of the prediction image based on a degree of similarity between the plurality of reference images used for generating the prediction image and a corrector (110) configured to perform correction processing on the prediction image by using a decoded neighboring block adjacent to the target image block, wherein the corrector is configured to control the correction processing based at least on an evaluation result of the prediction accuracy evaluator.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 21, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20210014489
    Abstract: An intra predictor (intra prediction device) 170 for performing intra prediction of each of the blocks obtained by dividing images in units of frames that constitute a video includes: a filter determiner 172A configured to determine a filter to be used to generate a predicted pixel from among multiple types of filters for each pixel position in a target block of the intra prediction; and a predicted pixel generator 173 configured to generate the predicted pixel from reference pixels around the target block using the filter determined by the filter determiner 172A.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shimpei NEMOTO, Shunsuke IWAMURA, Atsuro ICHIGAYA
  • Publication number: 20210014527
    Abstract: An image encoding device encodes a block-based target image. The image encoding device comprises, in a transform skip mode in which orthogonal transform processing of the target image is skipped, a motion compensation predictor configured to generate a prediction image corresponding to the target image by performing motion compensation prediction using a plurality of reference images, an evaluator configured to evaluate a degree of similarity between the plurality of reference images on a pixel-by-pixel basis, a subtractor configured to calculate prediction residuals each indicating a difference between the target image and the prediction image on a pixel-by-pixel basis, a rearranger configured to rearrange the prediction residuals based on a result of evaluation by the evaluator and an encoder configured to encode the prediction residuals rearranged by the rearranger.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20210014501
    Abstract: An image encoding device (1) according to a first feature encodes blocks obtained by dividing an original image of a frame included in a video. The image encoding device (1) includes a code amount allocator (180) configured to allocate a code amount to each of a plurality of intra prediction modes defined in advance, a mode selector (171) configured to select an intra prediction mode to be applied to a target block of intra prediction from among the plurality of intra prediction modes, and an encoder (130) configured to encode identification information indicating the selected intra prediction mode in accordance with the allocated code amount. The code amount allocator (180) calculates a feature amount of a plurality of reference pixels adjacent to the target block and changes a manner of allocation of code amounts to the plurality of intra prediction modes based on the calculated feature amount.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shimpei NEMOTO, Shunsuke IWAMURA, Atsuro ICHIGAYA
  • Publication number: 20210014491
    Abstract: An image encoding device (1) encodes a block-based target image. The image encoding device (1) comprises: a predictor (109) configured to generate a prediction image corresponding to the target image by performing prediction using a plurality of reference images; an evaluator (111) configured to evaluate a degree of similarity between the plurality of reference images on a pixel-by-pixel basis; a calculator (101) configured to calculate a prediction residual indicating a pixel-based difference between the target image and the prediction image; a determiner (112) configured to determine a partial area, to which an orthogonal transform and quantization are to be applied, of the prediction residual based on a result of the evaluation by the evaluator; and a transformer/quantizer (102) configured to perform an orthogonal transform and quantization only for the partial area in the prediction residual.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Shunsuke IWAMURA, Atsuro ICHIGAYA, Shimpei NEMOTO
  • Publication number: 20210014481
    Abstract: An image encoding device (1) includes a motion compensation predictor (109) configured to generate a prediction image corresponding to a target image by performing motion compensation prediction using a plurality of reference images, and an evaluator (111) configured to evaluate prediction accuracy of the prediction image for each image portion including one or more pixels by calculating a degree of similarity between the plurality of reference images for each image portion.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Atsuro ICHIGAYA, Shunsuke IWAMURA, Shimpei NEMOTO, Kazuhisa IGUCHI
  • Patent number: 10771132
    Abstract: Disclosed is a MIMO system including a transmitter and a receiver, in which an overall BER characteristic is improved. The transmitter (1) maps data, distributed among transmit antennas, onto an IQ plane to generate carrier symbols, and then, applies an inter-polarization interleave processing in a time direction to the carrier symbols between the transmit antennas, to generate OFDM signals. Receiving the OFDM signals, the receiver (2) demodulates the OFDM signals to generate complex baseband signals, and after that, applies a first deinterleave processing in a time direction to the complex baseband signals to generate time deinterleaved data. Further, the receiver (2) applies a MIMO separation processing to the time deinterleaved data to generate a plurality of sets of MIMO separated data and applies a second deinterleave processing between the receive antennas to the plurality of sets of MIMO separated data, so as to generate carrier symbols.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: September 8, 2020
    Assignees: NIPPON HOSO KYOKAI, NHK Engineering System, Inc.
    Inventors: Shingo Asakura, Madoka Honda, Kenichi Murayama, Takuya Shitomi, Susumu Saito, Yoshikazu Narikiyo, Hiroaki Miyasaka, Akihiko Satou, Tomoaki Takeuchi, Kenichi Tsuchida, Masahiro Okano, Masayuki Takada, Kazuhiko Shibuya
  • Patent number: 10757441
    Abstract: An encoding device, configured to divide an original image of a frame unit constituting a moving image into blocks and encode the blocks, includes a list generator configured to generate a list including motion vector candidates of a block to be encoded, based on a divided shape of the block to be encoded, and a divided shape and a motion vector of an adjacent block adjacent to the block to be encoded; and an encoder configured to encode a motion vector of the block to be encoded, based on the list. The list generator is configured so as not to add, to the list, a motion vector of a same hierarchy adjacent block which is a same hierarchy block adjacent to the block to be encoded, when the block to be encoded and the same hierarchy adjacent block are integrable. The same hierarchy block is a block that has the same width and height as the block to be encoded and has existed in the same block as the block to be encoded before being finally divided.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 25, 2020
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya
  • Patent number: 10681346
    Abstract: An image encoding device is disclosed that performs an operation of generating a predicted image of a target block. The prediction operation is a type of operation that does not use neighboring pixels. The image encoding device further performs operations of performing a low-pass filter process on a prediction signal located at a boundary of the predicted image of the target block, using a decoded neighboring signal, generating a prediction residual signal of target block using the predicted image of the target block, and dividing the prediction residual signal of the target block unit block shapes designated in advance.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: June 9, 2020
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Shunsuke Iwamura, Atsuro Ichigaya, Shinichi Sakaida
  • Publication number: 20200066251
    Abstract: A message management unit receives and accumulates a message, wherein the message is distributed for every update, is the message data representing a latest situation of a competition, an explanation generation unit generates an explanatory text for conveying unconveyed information detected from the message, based on conveyed information, a speech synthesis unit outputs a speech converted from the explanatory text, wherein the explanation generation unit stores the unconveyed information for the explanatory text as the conveyed information, stands by until completion of completion of the speech, and initiates a procedure for generating a new explanatory text based on updated unconveyed information.
    Type: Application
    Filed: May 23, 2018
    Publication date: February 27, 2020
    Applicants: NIPPON HOSO KYOKAI, NHK Engineering System, Inc.
    Inventors: Tadashi KUMANO, Ichiro YAMADA, Atsushi IMAI, Hideki SUMIYOSHI, Yuko YAMANOUCHI, Toshihiro SHIMIZU, Nobumasa SEIYAMA, Shoei SATO, Reiko SAITO, Taro MIYAZAKI, Kiyoshi KURIHARA, Manon ICHIKI, Tohru TAKAGI
  • Patent number: 10282160
    Abstract: An apparatus and method for generating audio data and an apparatus and method for playing audio data may be disclosed, in which the apparatus for playing the audio data may extract a descriptor related to a multichannel audio signal from a bitstream generated by the apparatus for generating the audio data, and play the multichannel audio signal, based on the extracted descriptor, and the descriptor may include information on an audio signal included in the multichannel audio signal.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 7, 2019
    Assignees: Electronics and Telecommunications Research Institute, NIPPON HOSO KYOKAI
    Inventors: Jae Hyoun Yoo, Tae Jin Lee, Kyeong Ok Kang, Kaoru Watanabe, Satoshi Oode, Ikuko Sawaya
  • Patent number: 10020821
    Abstract: A transmission device and reception device for digital data that have excellent resistance to noise are provided. An encoder (11-1) of this disclosure, included in a transmission device (1) of this disclosure, applies LDPC encoding to digital data using a unique check matrix for each code rate by using a check matrix in which, taking a check matrix initial value table established in advance for each code rate at a code length of 44880 bits as initial values, 1 entries of a partial matrix corresponding to an information length appropriate for a code rate of 93/120 are allocated in the column direction over a cycle of 374 columns. A demodulator (23) of this disclosure, included in a reception device (2) of this disclosure, decodes digital data encoded by the encoder (11-1).
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: July 10, 2018
    Assignee: NIPPON HOSO KYOKAI
    Inventors: Youichi Suzuki, Akinori Hashimoto, Shoji Tanaka, Kenichi Tsuchida, Takeshi Kimura, Yoshifumi Matsusaki
  • Patent number: 10009078
    Abstract: Disclosed is a MIMO system including a transmitter and a receiver, in which an overall BER characteristic is improved. The transmitter (1) maps data, distributed among transmit antennas, onto an IQ plane to generate carrier symbols, and then, applies an inter-polarization interleave processing in a time direction to the carrier symbols between the transmit antennas, to generate OFDM signals. Receiving the OFDM signals, the receiver (2) demodulates the OFDM signals to generate complex baseband signals, and after that, applies a first deinterleave processing in a time direction to the complex baseband signals to generate time deinterleaved data. Further, the receiver (2) applies a MIMO separation processing to the time deinterleaved data to generate a plurality of sets of MIMO separated data and applies a second deinterleave processing between the receive antennas to the plurality of sets of MIMO separated data, so as to generate carrier symbols.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 26, 2018
    Assignees: NIPPON HOSO KYOKAI, NHK Engineering System, Inc.
    Inventors: Shingo Asakura, Madoka Honda, Kenichi Murayama, Takuya Shitomi, Susumu Saito, Yoshikazu Narikiyo, Hiroaki Miyasaka, Akihiko Satou, Tomoaki Takeuchi, Kenichi Tsuchida, Masahiro Okano, Masayuki Takada, Kazuhiko Shibuya
  • Patent number: 9942364
    Abstract: An encoding device performing an encoding process according to an encoding scheme using a CTS indicating time at which presentation or reproduction is performed, comprising: an encapsulator that generates a media unit in which one or more access units encoded by the encoding scheme are capsulated, and a transmitter that transmits information indicating an absolute time of an access unit included at a top portion of the media unit, in addition to the media unit, wherein the encapsulator adds a CTS relative value to the nth access unit included in the media unit, the CTS relative value being a difference between the CTS of the nth access unit and the DTS of the n+1th access unit.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: April 10, 2018
    Assignee: NIPPON HOSO KYOKAI
    Inventor: Shuichi Aoki