Patents Assigned to nLIGHT, Inc.
-
Patent number: 12142889Abstract: Apparatus include a first optical fiber including a core situated to propagate a signal beam at a signal wavelength and an unwanted stimulated Raman scattering (SRS) beam at an SRS wavelength associated with the signal wavelength, and a fiber Bragg grating (FBG) situated in a core of a second optical fiber optically coupled to the core of the first optical fiber, the FBG having a selected grating reflectivity associated with the SRS wavelength and being situated to reflect the SRS beam back along the core of the second optical fiber and to reduce a damage associated with propagation of the SRS beam to power sensitive laser system components optically coupled to the second optical fiber. Methods are also disclosed.Type: GrantFiled: December 31, 2019Date of Patent: November 12, 2024Assignee: nLIGHT, Inc.Inventors: C. Geoffrey Fanning, Jay Small, Dahv A. V. Kliner, Chris A. Rivera
-
Patent number: 12078788Abstract: Apparatus include a transmissive optical substrate configured to receive a plurality of laser beams propagating along respective parallel beam axes at respective initial beam displacements with respect to an optical axis of the transmissive optical substrate, and configured to produce laser output beams having reduced displacements, wherein the transmissive optical substrate includes first and second surfaces with respective first and second curvatures defined to increase an output beam magnification and to nonlinearly increase an output beam displacement from the optical axis for a linearly increasing input beam displacement from the optical axis.Type: GrantFiled: August 14, 2020Date of Patent: September 3, 2024Assignee: nLIGHT, Inc.Inventors: Jay Small, Zhigang Chen, Manoj Kanskar
-
Patent number: 12081725Abstract: Systems and methods for three-dimensional imaging are disclosed. A three-dimensional imaging system may include a light source to emit a light pulse. The divergence of the light pulse may be configurable by the system. For example, the system may also include a receiving lens having a field of view and configured to receive a portion of the light pulse reflected or scattered by a scene. The system may configure the light source so that the divergence of the light pulse matches or approximates the field of view of the receiving lens.Type: GrantFiled: February 24, 2023Date of Patent: September 3, 2024Assignee: nLIGHT, Inc.Inventor: Paul S. Banks
-
Patent number: 12066546Abstract: Apparatuses, systems and methods for modulating returned light for acquisition of 3D data from a scene are described. A 3D imaging system includes a Fabry-Perot cavity having a first partially-reflective surface for receiving incident light and a second partially-reflective surface from which light exits. An electro-optic material is located within the Fabry-Perot cavity between the first and second partially-reflective surfaces. Transparent longitudinal electrodes or transverse electrodes produce an electric field within the electro-optic material. A voltage driver is configured to modulate, as a function of time, the electric field within the electro-optic material so that the incident light passing through the electro-optic material is modulated according to a modulation waveform. A light sensor receives modulated light that exits the second partially-reflective surface of the Fabry-Perot cavity and converts the light into electronic signals.Type: GrantFiled: September 11, 2019Date of Patent: August 20, 2024Assignee: nLIGHT, Inc.Inventors: Christopher Allen Ebbers, Paul S. Banks, Charles S. Tuvey
-
Patent number: 11982819Abstract: An apparatus includes an optical source situated to produce a fiducial source beam, and an optical fiducial pattern generator situated to produce with the fiducial source beam at least one transient optical fiducial on a laser processing target that is in a field of view of a laser scanner situated to scan a laser processing beam across the laser processing target, so that a positioning of the laser processing beam on the laser processing target becomes adjustable relative to the at least one transient optical fiducial.Type: GrantFiled: October 14, 2021Date of Patent: May 14, 2024Assignee: nLIGHT, Inc.Inventors: Jay Small, Robert J. Martinsen
-
Patent number: 11982835Abstract: An apparatus for scattering light may include: an optical fiber having a first length; and a sleeve, having a second length shorter than the first length, around the optical fiber. The optical fiber may include: a core; and cladding around the core. The sleeve may include fiber-optic material. The fiber-optic material may be substantially polymer-free. An outer surface of the sleeve may be roughened to scatter the light out of the sleeve through the roughened surface. A method of forming an apparatus for scattering light may include: providing a sleeve having a first length, the sleeve having inner and outer surfaces; providing an optical fiber having a second length longer than the first length; passing the sleeve around the optical fiber or threading the optical fiber through the sleeve; and roughening at least a portion of the outer surface of the sleeve.Type: GrantFiled: May 22, 2020Date of Patent: May 14, 2024Assignee: nLIGHT, Inc.Inventors: Manoj Kanskar, Shuang Li, Eric Martin, Jay Small, Jiamin Zhang
-
Patent number: 11979002Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.Type: GrantFiled: November 9, 2020Date of Patent: May 7, 2024Assignee: nLIGHT, Inc.Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
-
Publication number: 20240113488Abstract: Some embodiments may include an apparatus usable in a laser system. The apparatus may include at least one optical filter to receive a laser beam or laser light along a first axis, the laser beam or laser light generated by the laser system, wherein the at least one optical filter is configured to reflect one of light having a selected wavelength or a remainder of the laser light along a second axis that is non-parallel with the first axis and pass the other of the light having the selected wavelength or the remainder along a third axis that is parallel to the first axis. Other embodiments may be disclosed and/or claimed.Type: ApplicationFiled: August 6, 2021Publication date: April 4, 2024Applicant: NLIGHT, INC.Inventors: Scott R. Karlsen, Aaron BROWN, Jay SMALL, Stefano ORIGLIA, Andrea BRAGLIA
-
Publication number: 20240072504Abstract: Some embodiments may include an optical assembly usable to process light output from a laser source. The apparatus may include a housing to receive a distal end of an optical fiber that outputs the laser light; one or more actively cooled or passively cooled beam traps contained within the housing or coupled to the housing; and one or more optical apertures located inside the housing, at least one of the optical apertures to define a numerical aperture (NA) of a first portion of the laser light based on a radial dimension of the at least one optical aperture, the at least one optical aperture arranged to pass the first portion of the light and redirect a second different portion of the laser light to the one or more actively cooled or passively cooled beam traps. Other embodiments may be disclosed and/or claimed.Type: ApplicationFiled: January 10, 2022Publication date: February 29, 2024Applicant: NLIGHT, INC.Inventors: Aaron Brown, Jay SMALL, Kevin Michael CARBONE, Stefano ORIGLIA, Francesco PESCARMONA
-
Publication number: 20240053554Abstract: Various embodiments provide apparatuses, systems, and methods related to a dual-sided optical package. The package may include a base plate with a first side and a second side opposite the first side. The base plate may have a coolant channel positioned between the first side and the second side. A first set of optics may be coupled with the first side of the base plate, and a second set of optics may be coupled with the second side of the base plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: July 17, 2023Publication date: February 15, 2024Applicant: NLIGHT, INC.Inventors: Bryce TOKMAKIAN, Mark J. DEFRANZA, Eric MARTIN, Manoj Kanskar
-
Patent number: 11902494Abstract: Systems and methods for reducing the deleterious effects of specular reflections (e.g., glint) on active illumination systems are disclosed. An example system includes an illuminator or light source configured to illuminate a scene with electromagnetic radiation having a defined polarization orientation. The system also includes a receiver for receiving portions of the electromagnetic radiation reflected or scatter from the scene. Included in the receiver is a polarizer having a polarization axis crossed with the polarization orientation of the emitted electromagnetic radiation. By crossing the polarizer with the polarization of the emitted electromagnetic radiation, the polarizer may filter out glint or specular reflections in the electromagnetic radiation returned from the scene.Type: GrantFiled: January 13, 2022Date of Patent: February 13, 2024Assignee: nLIGHT, Inc.Inventors: Bodo Schmidt, Paul S. Banks, Charles Stewart Tuvey
-
Patent number: 11888084Abstract: Disclosed herein are laser scanning systems and methods of their use. In some embodiments, laser scanning systems can be used to ablatively or non-ablatively scan a surface of a material. Some embodiments include methods of scanning a multi-layer structure. Some embodiments include translating a focus-adjust optical system so as to vary laser beam diameter. Some embodiments make use of a 20-bit laser scanning system.Type: GrantFiled: August 5, 2022Date of Patent: January 30, 2024Assignee: nLIGHT, Inc.Inventor: Ken Gross
-
Patent number: 11886052Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.Type: GrantFiled: July 6, 2020Date of Patent: January 30, 2024Assignee: nLIGHT, IncInventors: Dahv A. V. Kliner, Roger Farrow
-
Patent number: 11886053Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.Type: GrantFiled: June 30, 2022Date of Patent: January 30, 2024Assignee: NLIGHT, INC.Inventors: Ken Gross, Brian Victor, Robert J. Martinsen, Dahv A. V. Kliner, Roger Farrow
-
Patent number: 11858842Abstract: Fiber bending mechanisms vary beam characteristics by deflecting or bending one or more fibers, by urging portions of one or more fibers toward a fiber shaping surface having a selectable curvature, or by selecting a fiber length that is to be urged toward the fiber shaping surface. In some examples, a fiber is secured to a flexible plate to conform to a variable curvature of the flexible plate. In other examples, a variable length of a fiber is pulled or pushed toward a fiber shaping surface, and the length of the fiber or a curvature of the flexible plate provide modification of fiber beam characteristics.Type: GrantFiled: May 20, 2020Date of Patent: January 2, 2024Assignee: NLIGHT, INC.Inventors: Aaron Brown, Aaron Ludwig Hodges, Dahv A. V. Kliner
-
Patent number: 11831121Abstract: Some embodiments may include a fiber laser including two or more input fibers and an output fiber to deliver a beam to a workpiece, the fiber laser comprising. The fiber laser may include a combiner having ends and a length, wherein the combiner is arranged to release, from its length, a portion of back-reflected light received from the output fiber at an output end of the ends from the combiner, the combiner including: a capillary tube to enclose part of the two or more input fibers at an input end of the ends of the combiner, the capillary tube having ends and a length located between the ends of the capillary tube; and a cladding light stripper (CLS) defined by part of the length of the capillary tube, wherein the CLS provides the release of the portion of the back-reflected light. Other embodiments may be disclosed and/or claimed.Type: GrantFiled: January 28, 2021Date of Patent: November 28, 2023Assignee: NLIGHT, INC.Inventors: Juan Carlos Lugo, Teemu Kokki, Roger Farrow, Dahv A. V. Kliner
-
Patent number: 11824323Abstract: The disclosed diode laser packages include a carrier having an optics-mounting surface to which first and second sets of collimating and turning optics are mounted. The carrier includes a heatsink receptacle medially located between the first and second sets. A cooling plenum has a diode-mounting surface and includes heatsink material disposed in the heatsink receptacle. The cooling plenum further has an inlet, an outlet, and a coolant passageway defined between the inlet and the outlet. The coolant passageway is sized to receive the heatsink material disposed in heatsink receptacle. Multiple semiconductor laser diode devices are each mounted atop the diode-mounting surface and positioned for bidirectional emission toward the first and second sets of collimating and turning optics. The multiple semiconductor laser diode devices are thermally coupled to the heatsink material through which coolant is deliverable by the coolant passageway.Type: GrantFiled: November 25, 2019Date of Patent: November 21, 2023Assignee: nLIGHT, Inc.Inventor: Manoj Kanskar
-
Publication number: 20230359051Abstract: Angularly homogenizing gradient index optical fiber having a refractive index profile that is non-quadratic to a degree sufficient to enhance precession of light as it is propagated through the fiber. Deviation from the quadratic may be limited to avoid profoundly changing the radial boundary within the fiber. Beam asymmetry, for example, associated with small aperture sources launched into a fiber off axis, may be made more symmetric as the beam is propagated through the homogenizing gradient index optical fiber. A refractive index profile may be manufactured to avoid a pure quadratic profile, or a fiber having a refractive index profile that is quadratic in only some orientations about the fiber axis may be twisted during draw to induce a refractive index profile path that enhances propagation precession.Type: ApplicationFiled: November 19, 2020Publication date: November 9, 2023Applicant: NLIGHT, INC.Inventors: Jay SMALL, Shuang LI, Dahv A.V. KLINER
-
Patent number: 11811186Abstract: An apparatus includes an optical gain fiber having a core, a cladding surrounding the core, the core and cladding defining an optical gain fiber numerical aperture, and a multimode fiber having a core with a larger radius than a radius of the optical gain fiber core, a cladding surrounding the core, the core and cladding of the multimode fiber defining a multimode fiber stable numerical aperture that is larger than the optical gain fiber numerical aperture, the multimode fiber being optically coupled to the optical gain fiber so as to receive an optical beam propagating in the optical gain fiber and to stably propagate the received optical beam in the multimode fiber core with low optical loss associated with the optical coupling.Type: GrantFiled: April 5, 2021Date of Patent: November 7, 2023Assignee: NLIGHT, INC.Inventors: Roger L. Farrow, Dahv A. V. Kliner
-
Patent number: 11808973Abstract: Spliced multi-clad optical fibers with a cladding light stripper (CLS) encapsulating the splice. The splice may facilitate conversion between two optical fibers having different architectures, such as different core and/or cladding dimensions. The CLS may comprise a first length of fiber on a first side of the splice, and a second length of fiber on a second side of the splice, encapsulating the splice within the lengths of the CLS. The splice may abut one or more of the lengths of the CLS, or may be separated from one or more lengths of the CLS by an intermediate length of a first and/or second fiber joined by the splice.Type: GrantFiled: May 17, 2021Date of Patent: November 7, 2023Assignee: nLIGHT, Inc.Inventors: Ryan Hawke, Teemu Kokki, Shaun Hampton, Chris Luetjen