Patents Assigned to OFS Fitel, LLC
  • Publication number: 20210088729
    Abstract: A method of splicing multicore optical fibers to one another for use in a data network. First and second multicore optical fibers each have a number of cores arranged in a certain pattern about the fiber axis, thus defining a number of pairs of cores wherein the cores of each pair are arrayed symmetrically with respect to a key plane that includes the fiber axis. Ends of the first and the second fibers are arranged in axial alignment to one another such that the key plane at the end of the first fiber is aligned with the key plane at the end of the second fiber, thereby placing a defined pair of cores in the first fiber in position for splicing to a corresponding defined pair of cores in the second fiber. The defined pairs of cores in the two fibers are then spliced to one another.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 25, 2021
    Applicant: OFS Fitel, LLC
    Inventors: Kelvin B. Bradley, Eric J. Leichter, Gregory A. Sandels, Yue Liang
  • Patent number: 10935749
    Abstract: A guide tool device for an optical fiber or cord includes a tool base that mounts on an adhesive syringe. A cord guide head has a flat leading edge, a key removably insertable into a keyway in the tool base, a guide channel for guiding a fiber toward the leading edge, and a tube for receiving an adhesive. An opening in the guide channel communicates adhesive from the tube into the channel, for applying the adhesive along a fiber while it is guided toward the leading edge on the guide head. A fitting is arranged to connect in sealing relationship with a distal end of the syringe, and a flexible tubing is connected between the fitting and the other end of the tube on the cord guide head. When urged toward the distal end of the syringe, the adhesive is communicated into the guide channel in the cord guide head.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 2, 2021
    Assignee: OFS FITEL, LLC
    Inventors: Kelvin B Bradley, John E George, Daniel Hendrickson, Willard C White, Roger A Vaughn
  • Publication number: 20210055752
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Application
    Filed: September 29, 2020
    Publication date: February 25, 2021
    Applicant: OFS FITEL, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David J. DiGiovanni
  • Patent number: 10927977
    Abstract: A fastener for communication lines includes a flat metallic body having an opening for a metallic mounting screw. A distal end of the body is configured to capture a line previously installed along a building surface via an adhesive or other non-metallic fastener. A cover has an open top, and a bottom wall having an opening that aligns with the opening in the fastener body when the cover is disposed over the body. The screw is inserted through the top of the cover, and the openings in the bottom wall and the fastener body, to mount the fastener body together with the cover at a position on the building surface where the fastener captures the line securely. The line is thus prevented from collapsing and interfering with responders if the adhesive fails during a building fire. The fastener is concealed by closing the cover top with an associated cap.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: February 23, 2021
    Assignee: OFS Fitel, LLC
    Inventor: Kelvin B Bradley
  • Publication number: 20210026092
    Abstract: An optical system comprising an optical conduit (e.g., gain fiber or rare-earth-doped fiber) with a bend having a bend radius (R). The bend induces a tension and a compression in the fiber core, which results in a corresponding strain (?). The corresponding bend-induced strain impacts the signal properties in the core of the fiber.
    Type: Application
    Filed: April 3, 2019
    Publication date: January 28, 2021
    Applicant: OFS Fitel, LLC
    Inventors: Kazi S Abedin, David J DiGiovanni, Tristan Kremp
  • Publication number: 20210018706
    Abstract: A fiber-optic cable having optical fibers that are arranged as a rollable ribbon. Water-swellable material (e.g., superabsorbent liquid, superabsorbent powder, superabsorbent adhesive, etc.) is applied directly to the rollable ribbon, thereby eliminating the need to incorporate conventional water-absorbing yarns, tapes, or other such similar materials. The rollable ribbon is surrounded by a tube, with a dielectric strength member positioned external to the tube and substantially parallel to the tube. A jacket, with a ripcord along a substantial length of the jacket, surrounds the tube. Also taught is a process for manufacturing a rollable-ribbon fiber-optic cable, in which a water-swellable material is applied directly to the rollable ribbon, thereby eliminating the need to incorporate conventional water-absorbing yarns, tapes, or other such similar materials.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 21, 2021
    Applicant: OFS Fitel, LLC
    Inventors: Harold P. Debban, Peter A. Weimann, Heng Ly
  • Patent number: 10871621
    Abstract: A fiber-optic cable having optical fibers that are arranged as a rollable ribbon. Water-swellable material (e.g., superabsorbent liquid, superabsorbent powder, superabsorbent adhesive, etc.) is applied directly to the rollable ribbon, thereby eliminating the need to incorporate conventional water-absorbing yarns, tapes, or other such similar materials. The rollable ribbon is surrounded by a tube, with a dielectric strength member positioned external to the tube and substantially parallel to the tube. A jacket, with a ripcord along a substantial length of the jacket, surrounds the tube. Also taught is a process for manufacturing a rollable-ribbon fiber-optic cable, in which a water-swellable material is applied directly to the rollable ribbon, thereby eliminating the need to incorporate conventional water-absorbing yarns, tapes, or other such similar materials.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 22, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Harold P Debban, Peter A Weimann, Heng Ly
  • Patent number: 10859772
    Abstract: A method of connecting lengths of multicore optical fibers (MCFs) to one another. First and second lengths of a MCF whose cores are arranged in a certain pattern about the fiber axis to define pairs of cores are provided, and the cores of each pair of cores are disposed symmetrically with respect to a key plane that includes the axis of the fiber. Ends of the first and the second lengths of the MCF are arranged in axial alignment with one another, and the key plane at the end of the first length of the MCF is aligned with the key plane at the end of the second length of the MCF. Each defined pair of cores in the first length of the MCF is thereby positioned to mate with the same defined pair of cores in the second length of the MCF.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 8, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Kelvin B Bradley, Eric J Leichter, Gregory A Sandels
  • Publication number: 20200379167
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: OFS Fitel, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Patent number: 10845558
    Abstract: A high count optical fiber cable is formed of a number of sub-unit components stranded around a central tension member. Each sub-unit component is formed to include the total number of individual fibers required to populate a given equipment rack (e.g., 288 fibers, for example). The individual fibers are preferably provided using a plurality of rollable optical fiber ribbons (permitting the large number of individual fibers to be compacted into a relatively small space), with water blocking material included in each sub-unit component. The sub-unit components may be formed to include individual strength members (i.e., in the form of sub-unit cables), or as loose tubes with an outer strength member disposed to surround the sub-units. Each sub-unit component is specifically sized to match the fiber capacity of, for example, a full equipment rack, minimizing the number of physical cables required for high density applications (e.g., data centers).
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: November 24, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Harold P Debban, Peter A Weimann
  • Patent number: 10827911
    Abstract: A vortex optical fiber for use in an illumination subsystem of an optical imaging system (e.g., a stimulated emission depletion (STED) microscopy system) includes an elongated optically transmissive medium having a set of regions including a core region, a trench region surrounding the core region, a ring region surrounding the trench region, and a cladding region, the set of regions having a doping profile providing a ?neff for vector modes in an LP11 mode group of greater than 1×10?4 in the visible spectral range so as to simultaneously guide stable Gaussian and orbital angular momentum (OAM) carrying modes at corresponding visible wavelengths.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: November 10, 2020
    Assignees: Trustees of Boston University, OFS FITEL, LLC
    Inventors: Siddharth Ramachandran, Lu Yan, Poul Kristensen
  • Patent number: 10816720
    Abstract: A specialized, dispersion-controlled fiber is particularly configured to exhibit a relatively uniform dispersion (D) over a broad spectral range (for example, 1000 nm to 2000 nm). The specialized fiber exhibits an essentially constant attenuation (?) over this same spectral range so that the fiber is defined as having a high “figure of merit” (FoM) where FoM is defined as |D|/?. The specialized fiber is well-suited for use as a pulse stretcher, providing the ability to separate out wavelength constituents of an extremely short (fs, ps) broadband pulse into the ns range, for example.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: October 27, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Poul Kristensen, Philip G Westergaard
  • Patent number: 10816747
    Abstract: A guide tool device for an optical fiber includes a body having an adhesive passage between a proximal end and a flat distal end of the body. The passage communicates an adhesive supplied at the proximal end to an exit opening in the distal end. Each of a pair of fiber guide channels extends from the body to guide an optical fiber when aligned inside the channel, for relative movement over the exit opening in the distal end of the body during use of the device. A connector fixed on the proximal end of the body in communication with the passage, mates with a connector at the distal end of a syringe containing the adhesive. When urged by the syringe, the adhesive flows through the passage and out the exit opening in the distal end of the body, thereby coating the fiber when guided over the distal end during use.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: October 27, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Kelvin B Bradley, Xavier Chiron
  • Patent number: 10809750
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Grant
    Filed: July 28, 2019
    Date of Patent: October 20, 2020
    Assignees: OFS Fitel, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David DiGiovanni
  • Publication number: 20200319399
    Abstract: The selection of starting materials used in the process of forming an MCR is controlled to specifically define the physical properties of the core tube and/or the capillary tubes in the local vicinity of the core tube. The physical properties are considered to include, but are not limited to, the diameter of a given tube/capillary, its wall thickness, and its geometry (e.g., circular, non-circular). A goal is to select starting materials with physical properties that yield a final hollow core optical fiber with a “uniform” core region (for the purposes of the present invention, a “uniform” core region is one where the struts of cladding periodic array surrounding the central core are uniform in length and thickness (with the nodes between the struts thus being uniformly spaced apart), which yields a core wall of essentially uniform thickness and circularity.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Applicant: OFS Fitel, LLC
    Inventor: Brian Mangan
  • Patent number: 10788622
    Abstract: Embodiments of the invention include a hybrid or electro-optical cable. The cable includes an optical fiber having a core region and a cladding region formed around the core region, and at least one coating region formed around the optical fiber cladding region. The coating region includes at least one first electrically conductive carbon structure, at least one second electrically conductive carbon structure, and an electrically insulating material coupled between the first electrically conductive carbon structure and the second electrically conductive carbon structure. The cable provides optical energy transmission via the optical fiber. The cable also provides electrical energy transmission via the at least one first and second electrically conductive carbon structures.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: September 29, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Daniel Hendrickson, Valerie Anne Hill
  • Publication number: 20200292751
    Abstract: A hollow core optical fiber and cable combination is configured to exhibit minimal SNR and loss degradation. This is achieved by either: (1) reducing the coupling between the fundamental and other (unwanted) modes propagating within the hollow core fiber; or (2) increasing the propagation loss along the alternative. The first approach may be achieved by designing the cable to minimize perturbations and/or designing the hollow core fiber to fully separate the fundamental mode from the unwanted modes so as to reduce coupling into the unwanted modes. Whether through fiber design or cable design, the amount of light coupled into unwanted modes is reduced to acceptable levels. The second approach may be realized through either fiber design and/or cable design to suppress the light in unwanted modes so that an acceptably low level of light is coupled back into the fundamental mode.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 17, 2020
    Applicant: OFS FITEL, LLC
    Inventors: David J. DiGiovanni, Daryl Inniss, Brian Mangan, Vitaly Mikhailov, John E. Pacini, Tristan Kremp
  • Publication number: 20200292774
    Abstract: A guide tool device for an optical fiber includes a body having an adhesive passage between a proximal end and a flat distal end of the body. The passage communicates an adhesive supplied at the proximal end to an exit opening in the distal end. Each of a pair of fiber guide channels extends from the body to guide an optical fiber when aligned inside the channel, for relative movement over the exit opening in the distal end of the body during use of the device. A connector fixed on the proximal end of the body in communication with the passage, mates with a connector at the distal end of a syringe containing the adhesive. When urged by the syringe, the adhesive flows through the passage and out the exit opening in the distal end of the body, thereby coating the fiber when guided over the distal end during use.
    Type: Application
    Filed: June 5, 2019
    Publication date: September 17, 2020
    Applicant: OFS Fitel, LLC
    Inventors: Kelvin B. Bradley, Xavier Chiron
  • Patent number: 10761288
    Abstract: A fiber optic cable connecter assembly includes a terminal wall having a port, an adapter at the port having one end for mating with a first fiber optic cable at the front of the wall and a second end for mating with a second cable at the back, and a spacer having an axial bore and a leading portion for engaging the port in sealing relationship. A cap has an axial bore, and a leading portion for engaging a rear portion of the spacer. A cable grommet/boot has a passage for receiving the first cable, and a leading end for engaging the rear portion of the spacer in sealing relationship. The rear portion of the grommet/boot protrudes from the back of the cap to act as a boot when the cap engages the spacer, after the first cable is connected to the adapter and the spacer engages the port.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: September 1, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Eric J Leichter, Denis E Burek
  • Publication number: 20200264393
    Abstract: A length of optical fiber has a core, a cladding layer surrounding the core and a coating layer applied over the cladding layer along the fiber for protecting the fiber. The coating layer is applied so that gaps of a certain width are defined intermittently in the coating layer over the length of fiber. The gaps in the coating layer have a depth D that is set to expose the cladding layer enough within the gaps so that the exposed cladding layer and the surrounded core can be fusion spliced or terminated with minimal if any required stripping of the coating layer off of the cladding layer.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 20, 2020
    Applicant: OFS Fitel, LLC
    Inventor: Eric J. Leichter