Patents Assigned to Ohara Inc.
  • Patent number: 10189740
    Abstract: An optical glass having a small partial dispersion ratio (?g,F), while having a refractive index (nd) and Abbe number (?d) within desired ranges, is obtained. The optical glass, in mol %, comprises 20.0 to 65.0% of an SiO2 component, 1.0 to 25.0% of an Nb2O5 component, and 1.0 to 35.0% of an Na2O component, and has a refractive index (nd) of 1.62 to 1.75, an Abbe number (?d) of 30 to 42, and a partial dispersion ratio (?g,F) of no greater than 0.594.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: January 29, 2019
    Assignee: OHARA INC.
    Inventors: Ken Kikkawa, Atsushi Nagaoka
  • Patent number: 9954217
    Abstract: An all-solid secondary battery has first electrode layers, and second electrode layers laminated on both sides of the first electrode layer with solid electrolyte layers placed in between, wherein at least one first opening is provided which penetrates the first electrode layer and the solid electrolyte layers adjacent to the first electrode layer, and the second electrode layers present on both sides of the first electrode layer are in contact with each other on the inside of the first opening.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: April 24, 2018
    Assignee: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 9941504
    Abstract: The present invention is an all-solid-state electrode body including: a positive electrode via that is formed in a negative electrode connection layer, and connects a plurality of a positive electrode connection layers adjacent to each other in a first direction; a negative electrode via that is formed in the positive electrode connection layer, and connects a plurality of the negative electrode connection layers adjacent to each other in the first direction; a positive electrode current collector layer which is exposed on a first surface that faces one side of the first direction in a stacked body, and is connected to the positive electrode connection layer via the positive electrode via; and a negative electrode current collector layer which is exposed on the first surface in the stacked body, and is connected to the negative electrode connection layer via the negative electrode via.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 10, 2018
    Assignees: SEIKO INSTRUMENTS INC., OHARA INC.
    Inventors: Shunji Watanabe, Tsuneaki Tamachi, Yoshimi Kanno, Kazumi Tanaka, Kazuhito Ogasa, Ryohei Sato
  • Patent number: 9908809
    Abstract: Provided is a high-strength crystallized glass or substrate having a high visible light transmittance and a good color balance, which is suitable for use in protecting members of portable electronic devices, optical devices and the like. Provided is a crystallized glass comprising, in terms of mol % on an oxide basis: an SiO2 component of 30.0% or more and 70.0% or less, an Al2O3 component of 8.0% or more and 25.0%, an Na2O component of 0% or more and 25.0% or less, an MgO component of 0% or more and 25.0% or less, a ZnO component of 0% or more and 30.0% or less and a TiO2 component of 0% or more and 10.0% or less, the molar ratio [Al2O3/(MgO+ZnO)] having a value of 0.5 or more and 2.0 or less, and comprising one or more selected from RAl2O4, RTi2O5, R2TiO4, R2SiO4, RAl2Si2O8 and R2Al4Si5O18 as a crystal phase.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 6, 2018
    Assignee: OHARA INC.
    Inventor: Kiyoyuki Momono
  • Patent number: 9580320
    Abstract: A solid electrolyte suitable for use in all solid type lithium ion secondary battery is made by sintering a form, particularly a greensheet, comprising at least lithium ion conductive inorganic substance powder. The solid electrolyte has porosity of 20 vol % or over.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 28, 2017
    Assignee: OHARA INC.
    Inventor: Yasushi Inda
  • Patent number: 9416048
    Abstract: To provide a crystallized glass capable of attaining the same clarification effect as in the composition containing an arsenic component and an antimony component even in the case of having the composition containing no arsenic component, while maintaining various physical properties peculiar to a Li2O—Al2O3—SiO2-based crystallized glass. Disclosed is a crystallized glass which is characterized by containing a predetermined amount of Li2O, Al2O3, and SiO2 components (on an oxide basis), and containing a predetermined amount of BaO component (on an oxide basis) and the like. This crystallized glass preferably contains ?-quartz and/or ?-quartz solid solution as main crystal phase(s), an average crystal particle size of the main crystal phase(s) being preferably within a range between 5 and 200 nm.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: August 16, 2016
    Assignee: OHARA INC.
    Inventor: Ryo Sawai
  • Patent number: 9413033
    Abstract: To provide an all-solid lithium ion secondary battery having a high voltage, a small internal resistance, and a discharge capacity close to a theoretical capacity and being able to be produced at low cost, and therefore, even in the case of collective sintering, generation of an inactive material due to interface reaction at the interface between an electrode active material and a solid electrolyte is reduced. An all-solid lithium ion secondary battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein an electrode active material included in the positive electrode layer is a phosphate having an olivine structure; and a solid electrolyte crystal included in the solid electrolyte layer includes polyphosphoric acid and the content of Li2O is 16 mol % to 25 mol % in terms of mol % on an oxide basis.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: August 9, 2016
    Assignee: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 9266780
    Abstract: An all solid state battery having high output performance and a manufacturing method thereof are provided. The all solid state battery of the present invention comprises a negative electrode layer, a positive electrode layer, and a solid electrolyte layer having a lithium ion conductivity. At least one layer of the solid electrolyte, the positive electrode layer, and the negative electrode layer includes a lithium ion conductive crystal and AxByOz (A is one or more selected from the group consisting of Al, Ti, Li, Ge, and Si. B is one or more selected from the group consisting of P, N, and C, wherein 1?X?4, 1?Y?5, and 1?Z?7). The solid electrolyte material to which a preferable sintering additive is added in a predetermined ratio is densified by firing at relatively low temperature in the manufacturing process. The ion conductivity thereof is also high.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: February 23, 2016
    Assignee: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 9236075
    Abstract: It is an object of the present invention to provide a crystallized glass which has various properties required for employing the substrate for information recording medium of the next generation, and also has significantly low specific gravity; and a crystallized glass substrate for information recording medium. A crystallized glass containing, as a crystal phase, one or more selected from RAl2O4 and R2TiO4 (wherein R is one or more selected from Mg and Fe), the crystallized glass comprising the components of SiO2 of 50% to 70%, Al2O3 of 10% to 26%, TiO2 of 1 to 15%, MgO of 2.5% to 25%, FeO of 0% to 8%, and ZnO of 0% to less than 2%, expressed in terms of mass percentage on an oxide basis, wherein the value of (Al2O3+MgO)/SiO2 is 0.30 or more and 0.65 or less, and a specific gravity is less than 2.63.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 12, 2016
    Assignee: OHARA INC.
    Inventors: Kiyoyuki Momono, Katsuhiko Yamaguchi, Toshitaka Yagi, Naoyuki Goto
  • Patent number: 9233871
    Abstract: Provided is optical glass that does not contain lead, which is an environmental pollutant. The optical glass is ideal for the transmission of light even after being exposed to X-rays, and has a high refractive index. The optical glass comprises, by mass % in terms of oxide versus the glass total mass, 1.0% to 60.0% of an SiO2 component, and one or more selected from the group consisting of an La2O3 component, ZrO2 component, TiO2 component, Nb2O5 component, and Ta2O5 as essential components. The optical glass has a refractive index (nd) of 1.50 or greater, and has a light intensity recovery rate of 45% or greater when the glass having been irradiated with X-rays with a dose of 2.5 Gy is irradiated with light of a xenon lamp for 11 hours.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 12, 2016
    Assignee: OHARA INC.
    Inventors: Michiko Ogino, Masahiro Onozawa
  • Patent number: 9159989
    Abstract: The all-solid battery has two electrode layers of a positive electrode and a negative electrode interposing a solid electrolyte layer therebetween, in which at least one of the electrode layers is composed of a sintered body of a mixed material including at least one or more types of electrode active material particles comprising electrode active material and solid electrolyte particles comprising solid electrolyte, and a portion of at least 30% by area of a grain boundary surrounding the electrode active material particles has a coating layer with a thickness of 1 to 200 nm.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: October 13, 2015
    Assignee: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 9153838
    Abstract: To provide a lithium ion conductive inorganic substance that makes it possible to further enhance the charge-discharge voltage of batteries and to further improve the charge-discharge properties of batteries. The lithium ion conductive inorganic substance includes a ZrO2 component from 2.6% to 52.0% by mass on an oxide basis. The lithium ion conductive inorganic substance is preferably used for lithium ion secondary batteries that have a positive electrode layer, a negative electrode layer, and a solid electrolyte layer intervening between the positive electrode layer and the negative electrode layer.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 6, 2015
    Assignee: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 8951681
    Abstract: To solve a problem that in a battery having a negative electrode having a capability of releasing a metal ion, a positive electrode for causing a liquid such as water or seawater to contribute to battery reaction, and an inorganic solid electrolyte, the inorganic solid electrolyte contacts the positive electrode for a long term, whereby a deterioration is generated from the interface between the electrolyte and the positive electrode so that the battery capacity falls or the battery cannot give a high power. The positive electrode and the inorganic solid electrolyte are not brought into contact with each other. Preferably, the interval between the positive electrode and the electrolyte is set to 0.3 nm or more.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 10, 2015
    Assignee: Ohara Inc.
    Inventor: Takashi Katoh
  • Patent number: 8883355
    Abstract: A lithium ion conductive glass ceramics which solves a problem of low thermal stability of the related-art lithium ion conductive glass ceramics and which is high in lithium ion conductivity, high in thermal stability of a raw glass and easy for molding is provided. The amount of a specified component in a glass ceramics (raw glass) is limited to a specified range, and specifically, a ZrO2 component is incorporated in the range of from 0.5% to 2.5% in terms of % by mass on the oxide basis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: November 11, 2014
    Assignee: Ohara, Inc.
    Inventor: Yasushi Inda
  • Patent number: 8852816
    Abstract: In the all-solid secondary battery of the present invention, a positive electrode layer and a negative electrode layer are disposed on both sides of a solid electrolyte layer, a first inorganic solid electrolyte and a second inorganic solid electrolyte are included into at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, the content of transition metal in the first inorganic solid electrolyte is less than 15% by mass on oxide basis, and the content of transition metal in the second inorganic solid electrolyte is 15% by mass or more on oxide basis.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 7, 2014
    Assignee: Ohara Inc.
    Inventor: Kazuhito Ogasa
  • Patent number: 8852764
    Abstract: To provide a substrate for information recording medium having various properties, in particular higher fracture toughness, required for application of the substrate for information recording medium of the next generation such as perpendicular magnetic recording system, etc. and a material with excellent workability for such purpose. A crystallized glass substrate for information recording medium, consisting of a crystallized glass which comprises one or more selected from RAl2O4 and R2TiO4 as a main crystal phase, in which R is one or more selected from Zn, Mg and Fe, and in which the main crystal phase has a crystal grain size in a range of from 0.5 nm to 20 nm, a degree of crystallinity of 15% or less, and a specific gravity of 3.00 or less.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 7, 2014
    Assignee: Ohara Inc.
    Inventors: Toshitaka Yagi, Naoyuki Goto
  • Patent number: 8822077
    Abstract: An object of the invention is to provide a lithium secondary battery using a fused salt at ambient temperature where a high capacity is able to be maintained even when it is stored at a high temperature environment or even when it is subjected to charge and discharge repeatedly and also to provide an electrode for a nonaqueous electrolytic lithium secondary battery. There is disclosed a lithium secondary battery using at least a fused salt at ambient temperature having ionic conductivity in which at least one of the positive and negative electrode contains a powder which solely comprises an inorganic solid electrolyte having lithium ionic conductivity. There is also disclosed an electrode for a lithium secondary battery using, at least, a ionic liquid having ionic conductivity which contains a powder solely comprising inorganic solid electrolyte having lithium ionic conductivity.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: September 2, 2014
    Assignee: Ohara Inc.
    Inventor: Takashi Katoh
  • Patent number: 8808407
    Abstract: A method of manufacturing a lithium ion secondary battery comprising the steps of: forming a laminate by laminating an electrolyte green sheet and a positive electrode green sheet; and sintering the laminate is provided. At least one of the electrolyte green sheet and the positive electrode green sheet contains an amorphous oxide glass powder in which a crystalline having a lithium ion conducting property is precipitated in the step of sintering. A solid state battery produced in accordance with the method is provided.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Ohara Inc.
    Inventor: Yasushi Inda
  • Publication number: 20140171287
    Abstract: There is provided an optical glass with a high refractive index and a low dispersion having a refractive index (nd) of not less than 1.75 and an Abbe's number (?d) of not less than 35 where the image formation characteristic is hardly affected by changes in temperature of the using environment. SiO2, B2O3 and La2O3 are contained as essential components and the ratio of the constituting components are adjusted whereby an optical glass in which a product of ? and ? where ? is an average linear expansion coefficient at ?30 to +70° C. and ? is an optical elasticity constant at the wavelength of 546.1 nm is not more than 130×10?12° C.?1×nm×cm?1×Pa?1 is able to be achieved.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: OHARA INC.
    Inventors: Junko Suzuki, Michiko Ogino, Masahiro Onozawa
  • Publication number: 20140141285
    Abstract: It is an object of the present invention to provide a crystallized glass which has various properties required for employing the substrate for information recording medium of the next generation, and also has significantly low specific gravity; and a crystallized glass substrate for information recording medium. A crystallized glass containing, as a crystal phase, one or more selected from RAl2O4 and R2TiO4 (wherein R is one or more selected from Mg and Fe), the crystallized glass comprising the components of SiO2 of 50% to 70%, Al2O3 of 10% to 26%, TiO2 of 1 to 15%, MgO of 2.5% to 25%, FeO of 0% to 8%, and ZnO of 0% to less than 2%, expressed in terms of mass percentage on an oxide basis, wherein the value of (Al2O3+MgO)/SiO2 is 0.30 or more and 0.65 or less, and a specific gravity is less than 2.63.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicant: OHARA INC.
    Inventors: Kiyoyuki Momono, Katsuhiko Yamaguchi, Toshitaka Yagi, Naoyuki Goto