Patents Assigned to Old Dominion University
  • Patent number: 9333368
    Abstract: A system for treatment of biological tissues is provided. The system includes a lens having a hollow, substantially hemispherical shape with an outer surface and an inner surface, the inner surface defining a substantially hemispherical cavity for inserting the biological tissues. The system further includes an antenna assembly for generating and directing electromagnetic radiation towards the outer surface. In the system, the lens is configured to direct the electromagnetic energy to an area in the cavity, a dielectric constant of the lens at the inner surface substantially matches a dielectric constant of the biological tissues, the dielectric constant monotonically increases from the outer surface to the inner surface, and the electromagnetic energy is generated via a series of pulses having a transient of less than about 1 nanosecond.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 10, 2016
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shu Xiao, Andrei Pakhomov, Karl H. Schoenbach
  • Patent number: 9173584
    Abstract: An imaging and recordation system is provided. The system includes a high-power, focusing antenna for illuminating biological tissue. The system further includes a power source for powering the antenna. The system further includes a data acquisition module, for recording the dielectric properties of tissues illuminated by the high-power, focusing antenna. The system illuminates the tissues using ultrashort electrical pulses.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 3, 2015
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Karl H. Schoenbach, Shu Xiao
  • Patent number: 9168373
    Abstract: Methods for a new, drug-free therapy for treating solid skin tumors through the application of nanosecond pulsed electric fields (“nsPEFs”) are provided. In one embodiment of the invention, the cells are melanoma cells, and the applied nsPEFs penetrate into the interior of tumor cells and cause tumor cell nuclei to rapidly shrink and tumor blood flow to stop. This new technique provides a highly localized targeting of tumor cells with only minor effects on overlying skin.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: October 27, 2015
    Assignees: Eastern Virginia Medical School, Old Dominion University Research Foundation
    Inventors: Richard Nuccitelli, Stephen J. Beebe, Karl H. Schoenbach
  • Patent number: 8948878
    Abstract: A method and device for treating a condition aggravated by the presence of amyloid fibrils is disclosed. The method includes applying a plurality of ultra-short pulses to target tissue comprising amyloid fibrils. The plurality of ultra-short pulses produce an electric field in the target tissue sufficient to change a molecular structure of the amyloid fibrils without causing the death, destruction, or serious injury of healthy cells surrounding the target tissue. For example, the plurality of ultra-short pulses can be sufficient to change the molecular structure of amyloid fibrils without causing apoptosis or necrosis of surrounding cells. The ultra-short pulses can be applied using an electrode device or a wideband antenna. The ultra-short pulses can have a duration ranging from 1 ps to 10 ns, an amplitude ranging from 100 V to 1 MV, and can apply an electrical field to the target tissue ranging from 1 kV/cm to 1 MV/cm.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 3, 2015
    Assignee: Old Dominion University Research Foundation
    Inventors: Karl H. Schoenbach, Lesley Greene
  • Publication number: 20140331993
    Abstract: Processes for recovering sugars and nicotine from a tobacco biomass include feeding a biomass of tobacco plants and subcritical water to a reactor, hydrolyzing the biomass of tobacco plants with the subcritical water at a temperature between about 150° C. and 305° C. and recovering a liquid product and a solid product from the reactor, wherein the liquid product contains water-soluble sugars and nicotine.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 13, 2014
    Applicants: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION, TYTON BIOSCIENCES
    Inventors: Sandeep KUMAR, Jose Luis Garcia MOSCOSO, Iulian BOBE, Peter MAJERANOWSKI
  • Publication number: 20140302569
    Abstract: Use of an algal for biodiesel fuel selected for growing strain of production, the genus Desmodesmus wherein said strain was under high nutrient conditions and is characterized as having a determined fatty by acid nuclear methyl ester content of 2.6% magnetic resonance analysis, nitrogen content of 11.3% and a carbon content of 46.3%. Given the growth and elemental composition of this strain t the instant algal strain is of particular use as a biomass source for biofuel lipids and/or biodiesel fuel production.
    Type: Application
    Filed: July 24, 2012
    Publication date: October 9, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrew S. Gordon, Patrick G. Hatcher
  • Publication number: 20140296354
    Abstract: Described herein are the one-pot synthesis and characterization of a library of low molecular weight peptoid compounds that are able to form gels at room temperature. The compounds are synthesized from biologically-based starting materials, are biocompatible, and are resistant to degradation by proteases and peptidases.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 2, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Guijun WANG, Hari P. R. MANGUNURU
  • Patent number: 8822222
    Abstract: A method and apparatus are provided for delivering an agent into a cell through the application of nanosecond pulse electric fields (“nsPEF's”). The method includes circuitry for delivery of an agent into a cell via known methods followed by the application of nanosecond pulse electric fields to said cell in order to facilitate entry of the agent into the nucleus of the cell. In a preferred embodiment, the present invention is directed to a method of enhancing gene expression in a cell comprising the application of nanosecond pulse electric fields to said cell. An apparatus for generating long and short pulses according to the present invention is also provided. The apparatus includes a pulse generator capable of producing a first pulse having a long duration and low voltage amplitude and a second pulse having a short duration and high voltage amplitude.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: September 2, 2014
    Assignees: Eastern Virginia Medical School, Old Dominion University
    Inventors: Stephen J. Beebe, Karl H. Schoenbach, Richard Heller
  • Publication number: 20140223981
    Abstract: Described herein are fertilizers for enhancing the carbon sequestration properties of soil. The fertilizers described herein include algae comprising algaenan. In one aspect, the fertilizer includes (a) one or more organic nitrogen sources, (b) one or more synthetic nitrogen sources, and (c) algae comprising algaenan. The fertilizers and fertilizer compositions release nitrogen at a predictable rate over time, which can enhance growth of plants that are fertile with the composition described herein.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 14, 2014
    Applicants: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Patrick G. Hatcher, John Joseph Moriarty
  • Publication number: 20140222126
    Abstract: A system for treatment of biological tissues is provided. The system includes a lens having a hollow, substantially hemispherical shape with an outer surface and an inner surface, the inner surface defining a substantially hemispherical cavity for inserting the biological tissues. The system further includes an antenna assembly for generating and directing electromagnetic radiation towards the outer surface. In the system, the lens is configured to direct the electromagnetic energy to an area in the cavity, a dielectric constant of the lens at the inner surface substantially matches a dielectric constant of the biological tissues, the dielectric constant monotonically increases from the outer surface to the inner surface, and the electromagnetic energy is generated via a series of pulses having a transient of less than about 1 nanosecond.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shu Xiao, Andrei Pakhomov, Karl H. Schoenbach
  • Patent number: 8798705
    Abstract: An instrument 10 for delivering a high voltage pulse to tissue is disclosed. The instrument 10 can include an outer support member 12 with a liquid reservoir 14 that has a liquid-contacting interior surface 16, an opening 18 at a distal end 20 of the outer support member 12, and a ground electrode 22 extending in a longitudinal direction and having a lower surface 23 proximate the opening 18. The instrument 10 can also include a working electrode 26 extending longitudinally from the liquid-contacting interior surface 16 with a needle-shaped distal portion 28 proximate the distal end 20; and an inlet port 31 and an outlet port 34 in liquid communication with the liquid reservoir 14. The working electrode 26 can be electrically isolated from the ground electrode 22 by an insulating portion 30 of the outer support member 12, and a direct path can exist through the liquid reservoir 14 between the ground electrode 22 and the working electrode 26.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 5, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Juergen F. Kolb, Karl H. Schoenbach, Stephen P. Beebe
  • Publication number: 20140199384
    Abstract: Described is a direct method for the fabrication of resorcinarene nanocapsules by photopolymerization of compounds of formula (I), such as resorcinarene tetraalkene tetrathiol (RTATT), in the absence of any template or preorganization. Further, by varying the polymerization media, a variety of other polymeric architectures like lattices, fibrous networks, and nanoparticles were obtained. The morphology and structure were characterized by transmission electron microscopy, energy dispersive spectroscopy, scanning electron microscopy, dynamic light scattering, infrared and nuclear magnetic resonance spectroscopy. These morphologically distinct resorcinarene polymeric architectures contain residual thiol and ene functional groups offering potential functionalization opportunities.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 17, 2014
    Applicant: Old Dominion University Research Foundation
    Inventors: Ramjee Balasubramanian, Zaharoula M. Kalaitzis, Srujana Prayakarao
  • Patent number: 8778035
    Abstract: Disclosed herein is the production of hydrocarbon based fuel from micro-organisms and algae that comprise algaenan without requiring prior removal of water, as well as the production of hydrocarbon based fuel directly from the algaenan itself. Also disclosed herein are feed material for the processes disclosed herein comprising modified algae and algaenan that selectively produce hydrocarbon of desired chain lengths, along with the process of modifying the algae and algaenan. Also disclosed herein is the production of both hydrocarbon and organic fertilizer from algae without the need to remove the water from the algae prior to processing.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 15, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Patrick G. Hatcher, Elodie Salmon
  • Patent number: 8772004
    Abstract: A method and device for aggregating algae in an aqueous solution is disclosed. The method can include providing an algae feed comprising a liquid and algae dispersed therein. The algae feed can be aggregated by applying a nanosecond pulsed electric field to the algae feed. The nanosecond pulsed electric field can include a plurality of electric pulses having a pulse duration ranging from 1 to 1,000 nanoseconds. The method can also include separating an aggregated algae stream from the algae feed and feeding the aggregated algae stream to a lipid extraction operation.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 8, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Gary C. Schafran, Juergen F. Kolb, Aron Stubbins, Karl H. Schoenbach
  • Publication number: 20140106430
    Abstract: Methods for forming activated platelet gels using nsPEF's and applying the activated gels to wounds, such as heart tissue after myocardial infarction. The platelets are activated by applying at least one nsPEF with a duration between about 10 picoseconds to 1 microsecond and electrical field strengths between about 10 kV/cm and 350 kV/cm.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicants: Eastern Virginia Medical School, Old Dominion University
    Inventors: Barbara Y. HARGRAVE, Peter F. BLACKMORE, Stephen J. BEEBE, Karl H. SCHOENBACH
  • Patent number: 8697134
    Abstract: Described is a direct method for the fabrication of resorcinarene nanocapsules by photopolymerization of compounds of formula (I), such as resorcinarene tetraalkene tetrathiol (RTATT), in the absence of any template or preorganization. Further, by varying the polymerization media, a variety of other polymeric architectures like lattices, fibrous networks, and nanoparticles were obtained. The morphology and structure were characterized by transmission electron microscopy, energy dispersive spectroscopy, scanning electron microscopy, dynamic light scattering, infrared and nuclear magnetic resonance spectroscopy. These morphologically distinct resorcinarene polymeric architectures contain residual thiol and ene functional groups offering potential functionalization opportunities.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 15, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Ramjee Balasubramanian, Zaharoula M. Kalaitzis, Srujana Prayakarao
  • Patent number: 8646918
    Abstract: A projection system having a set of projectors that cast images: (i) onto the concave surface of a hemispherical dome, as is usual in planetariums and (ii) onto the surface of a centrally located sphere. The images thus cast may be coordinated by a controlling computer program, so that changes in the content or orientation of the images on the sphere result in corresponding changes in the images on the dome and vice versa.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 11, 2014
    Assignee: Old Dominion University Research Foundation
    Inventor: Declan G. De Paor
  • Patent number: 8649631
    Abstract: Disclosed is a distortion invariant system, method and computer readable medium for detecting the presence of one or more predefined targets in an input image. The input image and a synthetic discriminant function (SDF) reference image are correlated in a shift phase-encoded fringe-adjusted joint transform correlation (SPFJTC) correlator yielding a correlation output. A peak-to-clutter ratio (PCR) is determined for the correlation output and compared to a threshold value. A predefined target is present in the input image when the PCR is greater than or equal to the threshold value.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: February 11, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Mohammed Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim
  • Publication number: 20130318947
    Abstract: Systems and methods for treatment of a heated exhaust gas including hydrocarbons are provided. A method includes providing a first gas including a gaseous mixture of vaporized diesel fuel and steam and treating the first gas using at least one corona discharge including a combination of streamers to transform the first gas into a second gas including volatile partially oxidized hydrocarbons (PO—HC) and hydrogen gas (H2), the combination of streamers including primarily surface streamers. The method also includes extracting at least a portion of vaporized diesel fuel and steam from the second gas to form a third gas and directing a combination of the third gas and the exhaust gas into a nitrogen oxides (NOx) reduction reactor.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Muhammad Arif MALIK, Karl H. SCHOENBACH, Richard HELLER
  • Patent number: 8586807
    Abstract: Disclosed herein is the use of terrestrial plant materials (e.g., leaves and bark) that contain biopolymer materials to produce hydrocarbon-rich crude oils that can be refined further into hydrocarbon-based biofuels, via the hydrous pyrolysis method, which involves heating to subcritical temperatures and pressures in an aqueous medium. One can also isolate the aliphatic biopolymers and utilize them as feedstocks for production of the hydrocarbon-rich crude via hydrous pyrolysis.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Old Dominion University Research Foundation
    Inventor: Patrick G. Hatcher